中国南方典型湿润山区植被类型的无人机多光谱遥感机器学习分类研究
张妮娜,张珂,李运平,李曦,刘涛

Study on Machine Learning Methods for Vegetation Classification in Typical Humid Mountainous Areas of South China based on the UAV Multispectral Remote Sensing
Nina ZHANG,Ke ZHANG,Yunping LI,Xi LI,Tao LIU
表2 基于不同机器学习模型的分类精度评价
Table 2 Comparison of the classification accuracy of the four machine learning methods
类别DTRFSVMAdaBoost
UA/%PA/%UA/%PA/%UA/%PA/%UA/%PA/%
杉树80.3188.7087.3990.4383.0885.7190.3794.57
竹林90.8383.1990.3294.1279.6678.3397.5496.74
杉竹混合林94.5192.4796.6793.5578.9580.6597.7595.60
乔木混合林96.1097.3797.3396.0595.8392.0097.5098.73
灌木丛100.0076.47100.0064.7192.3185.71100.00100.00
农作物80.2694.7490.48100.0092.3192.31100.0076.92
裸地83.3371.43100.0085.7157.14100.00100.0066.67
水体100.00100.00100.00100.00100.0025.00100.00100.00
总体精度/%89.8792.4383.5295.55
Kappa系数0.861 60.903 70.787 60.941 9
均方误差0.305 10.405 30.514 50.376 4