Please wait a minute...


Remote Sensing Technology and Application  2010, Vol. 25 Issue (5): 619-626    DOI: 10.11873/j.issn.1004-0323.2010.5.619
Study on the Camparison of Image Fusion for the Same-source and Different-source Sensor
LIN Li-juan,XU Han-qiu,CHEN Jing-jie,LIN Dong-feng,DU Li-ping
 (College of Environment and Resources,Institute of Remote Sensing Information Engineering,
Fuzhou University,Fuzhou 350108,China)
Download:  PDF (1958KB) 
Export:  BibTeX | EndNote (RIS)      

Satellite image fusion is always a focus in remote sensing field.According to data sources difference,image fusion can be divided into two broad categories:fusion of images using different sensors data and using same sensor data.Five recently proposed/modified fusion algorithms have been employed to test the fusion results of the two categories.The image pair,TM+ SPOT pan,was used to test fusion between different image sources,while the pair,IKONOS MS+ pan,was employed to test fusion between same sensor data.The study reveals that the overall results of fusion between same sensor data are better than those of fusion between different sensors image sources.The selected fusion algorithms have different performance in image fusion results between the two categories.The SVR transform is suitable for both categories of image fusion.It can greatly improve the spatial resolution,information quantity and clarity,but retain spectral information of the original multispectral image.The SFIM\|fused image has the highest spectral fidelity in both categories of image fusion,but has the lowest spatial frequency information gain.Although the MB transform can improve the spatial resolution of the original image,it generally failed to improve spectral fidelity,information quantity and clarity.The Ehlers transform is more suitable for image fusion between different sensors data while the WT is more applicable to image fusion between same sensor data.

Key words:  Remote sensing      Image fusion      Spectral fidelity      High spatial frequency information gain     
Received:  26 February 2010      Published:  30 October 2013
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
Articles by authors
XU Han-Qiu
CHEN Jing-Ji
LIN Dong-Feng
DU Li-Ping

Cite this article: 

LIN Li-Juan, XU Han-Qiu, CHEN Jing-Jie, LIN Dong-Feng, DU Li-Ping. Study on the Camparison of Image Fusion for the Same-source and Different-source Sensor. Remote Sensing Technology and Application, 2010, 25(5): 619-626.

URL:     OR

[1]Zhou J,Civco D L,Silander J A.A Wavelet Transform Method to Merge Landsat TM and SPOT Panchromatic Data[J].International Journal of Remote Sensing,1998,19(4):743-757.
[2]Chen Dechao,Zhou Haibo,Chen Zhongyuan,et al.Study on Fusion Algorithms of TM and SPOT Images[J].Remote Sensing Technology and Application,2001,16(2):110-115.[陈德超,周海波,陈中原,等.TM与SPOT影像融合算法比较研究[J].遥感技术与应用,2001,16(2):110-115.]
[3]Xiao Ao,Tao Shu,Wang Xiaoshuang,et al.Remote Sensing Analysis and Evaluation of Fusion[J].Journal of Capital Normal University (Natural Science Edition),2007,28(4):77-80.[肖奥,陶舒,王晓爽,等.遥感融合方法分析与评价[J].首都师范大学学报(自然科学版),2007,28(4):77-80.]
[4]Li Hongjie,Dai Fuchu,Xu Ling,et al.The Assessment of Fused Image of ETM+ and SPOT5 Pan in the Investigation of Geological Hazards[J].Remote Sensing for Land & Resources,2008,(1):43-45.[李宏杰,戴福初,许领,等.地质灾害调查中ETM+与SPOT5 Pan影像融合与评价[J].国土资源遥感,2008,(1):43-45.]
[5]Liu J G.Evaluation of Landsat-7 ETM+ Panchromatic Band for Image Fusion with Multispectral Bands[J].Natural Resources Research,2000,9(4):269-276.
[6]Sun Danfeng.Study on Fusion Algorithms of IKONOS Pan and Multi-spectral Images[J].Remote Sensing Technology and Application,2002,17(1):41-45.[孙丹峰.IKONOS 全色与多光谱数据融合方法的比较研究[J].遥感技术与应用,2002,17(1):41-45.]
[7]Xu Rongfeng,Xu Hanqiu.Evaluation on Image Fusion Algorithms of Landsat-7 ETM+ Pan Band and Multispectral Bands[J].Geo-information Science,2004,6(1):99-104.[许榕峰,徐涵秋.ETM+全色波段及其多光谱波段图像的融合应用[J].地球信息科学,2004,6(1):99-104.]
[8]Wang Z J,Ziou D,Armenakis C,et al.A Comparative Analysis of Image Fusion Methods[J].IEEE Transactions on Geosciences and Remote Sensing,2005,43(6):1391-1402.
[9]Yu Junming,Zhou Yi,Wang Shixin,et al.Evaluation and Analysis on Image Fusion of ETM+[J].Remote Sensing Technology and Application,2007,22(6):733-738.[于君明,周艺,王世新,等.ETM+影像融合的评价分析[J].遥感技术与应用,2007,22(6):733-738.]
[10]Xu Hanqiu.Study on Data Fusion and Classification of Landsat 7 ETM+ Imagery[J].Journal of Remote Sensing,2005,2(9):186-194.[徐涵秋.Landsat7 ETM+影像的融合和自动分类研究[J].遥感学报,2005,2(9):186-194.]
[11]Xu Hanqiu.Classification of Fused Imagery Base on the SFIM Algorithm[J].Geomatics and Information Science of Wuhan University,2004,29(10):920-923.[徐涵秋.基于SFIM算法的融合影像分类研究[J].武汉大学学报·信息科学版,2004,29(10):920-923.]
[12]Zhang Y.A New Merging Method and Its Spectral and Spatial Effects[J].International Journal of Remote Sensing,1999,20(10):2003-2014.
[13]Zhao Yingshi.The Principle and Method of Analysis of Remote Sensing Application[M].Beijing:Science Press,2003:261-262.[赵英时.遥感应用分析原理与方法[M].北京:科学出版社,2003:261-262.]
[14]Ehlers M.Multisensor Image Fusion Techniques in Remote Sensing[J].ISPRS Journal of Photogrammetry and Remote Sensing,1991,46:19-30.
[15]Xu H Q.Evaluation of Two Absolute Radiometric Normalization Algorithms for Pre-processing of Landsat Imagery[J].Journal of China University of Geosciences,2006,17(2):146-150.
[16]Bretschneider T,Kao O.Image Fusion in Remote Sensing[C/OL]//Proceedings of the 1st Online Symposium of Electronic Engineers,2000,1-8,
[17]Shannon C E.A Mathematical Theory of Communication[M].Shanghai:Shanghai Science and Technology Commission,1965.[Shannon C E.通信的数学理论[M].上海:上海市科学技术编译馆,1965.]


No Suggested Reading articles found!