Please wait a minute...


Remote Sensing Technology and Application  2020, Vol. 35 Issue (1): 153-162    DOI: 10.11873/j.issn.1004-0323.2020.1.0153
Validation of Narrow-band Surface Albedo Retrieved from FY-3C MERSI Satellite Data
Chunliang Zhao1,2(),Wenbo Xu3,Jinlong Fan1()
1. National Satellite Meteorological Center, Beijing 100081, China
2. Chinese Academy of Agricultural Sciences, Institute of Agricultural Resources and Regional Planning, Beijing 100081, China
3. University of Electronic Science and Technology of China, School of Resources and Environment, Chengdu 611731, China
Download:  HTML  PDF (14611KB) 
Export:  BibTeX | EndNote (RIS)      

Surface albedo is one of the driving factors in surface radiant energy balance and surface-atmosphere interaction.It is widely used in surface energy balance, medium and long-term weather forecasting and global change research.This study aims to validate the surface albedo retrieved from FY-3C MERSI. This paper selected four regions in Africa and North America as study areas to validate the retrieved albedo from the reflectance data and angle data of FY-3C MERSI at 250 m resolution in 2014. The semi-empirical kernel-driven BRDF(bidirectional reflectance distribution function) model RossThick-LiSparseR and least squares fitting method were used to calculate the parameter of BRDF. Then four narrow-band black-sky albedos and four narrow-band white-sky albedos can be obtained by angle integration. Finally, the cross-validation of FY-3C surface narrow-band albedo products with MODIS albedo products (MCD43A3) was carried out. The results show that theRoot Mean Square Error(RMSE) between the FY-3C narrow-band albedo and the corresponding MODIS narrow-band albedo is in the range of 0.01 ~ 0.04, and the Mean Bias (MBIAS) is 0.09. FY-3C narrow-band albedo has good consistency with the corresponding MODIS narrow-band albedo in the visible and near-infrared bands. So, the methodologyof using the BRDF model to invert the surface albedo of FY-3C medium resolution imaging spectrometer data is feasible and reliable. The further improvement of the inversion accuracy of FY3C-MERSI surface albedo also depends on the improvement of basic data processing quality, including image geometric correction, calibration, and strict data quality control.

Key words:  Surface Albedo      FY-3C      MERSI      MODIS     
Received:  09 October 2018      Published:  01 April 2020
ZTFLH:  TP75  
Corresponding Authors:  Jinlong Fan     E-mail:;
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
Articles by authors
Chunliang Zhao
Wenbo Xu
Jinlong Fan

Cite this article: 

Chunliang Zhao,Wenbo Xu,Jinlong Fan. Validation of Narrow-band Surface Albedo Retrieved from FY-3C MERSI Satellite Data. Remote Sensing Technology and Application, 2020, 35(1): 153-162.

URL:     OR

区域 经度/° 纬度/°
BurkinaFaso Koumbia -6.14,-1.14 8.72,13.72
Ethiopia WestShewa 35.30,40.30 6.60,11.60
Tanzania Rungwe 31.68,36.68 -11.55,-6.55
USA Fresno -122.32,-117.32 34.28,39.28
Table 1  Geographical location of the study area
Fig.2  The reflectance image of FY-3C in the study area(composed of band 3、4、1)











1 0.470 0.05 250 0.45 100%
2 0.550 0.05 250 0.40 100%
3 0.650 0.05 250 0.40 100%
4 0.865 0.05 250 0.45 100%
Table 2  The 250 m resolution channel specification of MERSI
Fig.1  The angle data of FY-3C
Fig.3  The Black Sky Albedo(BSA) and White Sky Albedo(WSA) in the study area
Fig.4  The spectral response function of FY-3C and MODIS
地表反照率 研究区 TanzaniaRungwe BurkinaFasoKoumbia USAFresno EthiopiaWestShewa
BSA FY3C_band1-MODIS_band3 0.7381 0.5294 0.8854 0.8709
FY3C_band2-MODIS_band4 0.8394 0.7398 0.9362 0.8732
FY3C_band3-MODIS_band1 0.8909 0.8776 0.9402 0.9092
FY3C_band4-MODIS_band2 0.9320 0.8944 0.8801 0.9004
WSA FY3C_band1-MODIS_band3 0.6271 0.5055 0.8543 0.8388
FY3C_band2-MODIS_band4 0.7460 0.7350 0.8961 0.8295
FY3C_band3-MODIS_band1 0.8345 0.8690 0.8942 0.8770
FY3C_band4-MODIS_band2 0.9074 0.8592 0.7588 0.8682
Table 3  Correlation of verification points in study area
地表反照率 研究区 TanzaniaRungwe BurkinaFasoKoumbia USAFresno EthiopiaWestShewa
BSA FY3C_band1-MODIS_band3 0.081 0.014 0.033 0.055
FY3C_band2-MODIS_band4 0.018 0.007 0.041 0.016
FY3C_band3-MODIS_band1 0.009 0.023 0.032 0.008
FY3C_band4-MODIS_band2 0.005 0.103 0.023 0.018
WSA FY3C_band1-MODIS_band3 0.098 0.080 0.034 0.080
FY3C_band2-MODIS_band4 0.021 0.007 0.038 0.020
FY3C_band3-MODIS_band1 0.011 0.005 0.027 0.011
FY3C_band4-MODIS_band2 0.008 0.029 0.027 0.027
Table 4  RMSE of validation in study areas
地表反照率 研究区 TanzaniaRungwe BurkinaFasoKoumbia USAFresno EthiopiaWestShewa
BSA FY3C_band1-MODIS_band3 0.009 0.006 0.249 0.008
FY3C_band2-MODIS_band4 0.004 0.185 0.249 0.005
FY3C_band3-MODIS_band1 0.005 0.243 0.243 0.025
FY3C_band4-MODIS_band2 0.048 0.245 0.212 0.043
WSA FY3C_band1-MODIS_band3 0.009 0.009 0.247 0.008
FY3C_band2-MODIS_band4 0.004 0.025 0.243 0.005
FY3C_band3-MODIS_band1 0.006 0.097 0.204 0.031
FY3C_band4-MODIS_band2 0.095 0.234 0.134 0.049
Table 5  Bias of validation in study areas
Fig.5  scatter plot of BSA and WSA in Rungwe_Tanzania
Fig.6  scatter plot of BSA and WSA in Koumbia_BurkinaFaso
Fig.7  scatter plot of BSA and WSA in Fresno_USA_MODIS
Fig.8  Scatter plot of BSA and WSA in WestShewa_Ethiopia
1 Dickinson R E .Land Processes in Climate Models[J].Remote Sensing of Environment,1995,51(1):27-38.
2 Schaaf C , Wang Z .MCD 43A1 MODIS/Terra+Aqua BRDF/Albedo Model Parameters Daily L3 Global-500 m V006[EB/OL].,2015.
3 European Space Agency .MERIS Product Handbook[EB/OL].,2011.
4 ADEOS .Advanced Earth Observing Satellite-II-Reference Handbook[EB/OL].,2006.
5 Sánchez-Zapero J .Global 10-daily SPOT-VEGETATION Bi-hemisphericalAlbedo(Continents) Product User Manual[EB/OL].,2017.
6 Liang Shunling , Zhang Xiaotong , Xiao Zhiqiang ,et al .Global and Surface Satellite(GLASS) Products: Algorithm, Verification and Analysis[M].Beijing:Higher Education Press,2014:33-72.梁顺林,张晓通,肖志强, 等 .全球陆表特征参量(GLASS)产品:算法、验证与分析[M] .北京:高等教育出版社,2014:33-72.
7 Qu Y , Liu Q , Liang S ,et al .Direct-estimation Algorithm for Mapping Daily Land-surface Broadband Albedo from MODIS Data[J].IEEE Transactions on Geoscience and Remote Sensing,2013,52(2):907-919.
8 Wang Fei .Preliminary Study on Retrieving Surface Albedo with FY-2D Data [D].Nanjing:Nanjing University of Information Science & Technology,2013.王飞.应用FY-2D资料反演地表反照率的初步研究[D] .南京:南京信息工程大学,2013.
9 Zhang Hu , Jiao Ziti , Li Xiaowen ,et al .A Priori Knowledge Application in the Retrieval of Surface Albedo Using HJ-1 CCD Data[J].Journal of Remote Sensing,2013,17(2):295-305.张虎,焦子锑,李小文, 等 .先验知识估算HJ-1CCD数据地表反照率[J].遥感学报,2013,17(2):295-305.
10 Fan Xianlei , Yan Hongbo , Qu Ying .Comparison and Validation of the Methods for Estimating Surface Albedo from HJ-1 A/B CCD data[J].Remote Sensing for Land & Resources,2019,31(3):123-131.樊宪磊,阎宏波,瞿瑛.基于HJ-1A/B CCD地表反照率估算方法比较与验证[J].国土资源遥感,2019,31(3):123-131.
11 Yan Hongbo .Remote Sensing Estimation Method of Surface Albedo from FY-3C MERSI Data[D] .Jilin:Northeast Normal University,2019.阎宏波. 基于FY-3C MERSI数据的地表反照率遥感估算方法研究 [D] .吉林:东北师范大学,2019.
12 Sun Yuejun , Wang Zihao , Qin Qiming ,et al .Retrieval of Surface Albedo based on GF-4 Geostationary Satellite Image Data[J].Journal of Remoting Sensing,2018,22(2):220-233.孙越君,汪子豪,秦其明, 等 .高分四号静止卫星数据的地表反照率反演[J].遥感学报,2018,22(2):220-233.
13 Yang Jun , Dong Chaohua , Lu Naimeng ,et al .FY-3A: The New Generation Polar-orbiting Meteorological Satellite of China[J].Acta Meteorologica Sinica,2009,67(4):501-509.杨军,董超华,卢乃锰, 等 .中国新一代极轨气象卫星—风云三号[J].气象学报,2009,67(4):501-509.
14 Zhang Peng , Yang Hu , Qiu Hong ,et al .Quantitative Remote Sensing from the Current Fengyun 3 Satellites[J].Advances in Meteorological Science and Technology,2012,2(4):6-11.张鹏,杨虎,邱红, 等 .风云三号卫星的定量遥感应用能力[J].气象科技进展,2012,2(4):6-11.
15 Lu Naimeng , Dong Chaohua , Yang Zhongdong ,et al .Ground Segment of the New General of Fengyun Popoar Orbit Meteorological Satellite (FY-3) and Its Data Application[J].Engineering Science,2012(9):10-19.卢乃锰,董超华,杨忠东, 等 .我国新一代极轨气象卫星(风云三号)工程地面应用系统[J].中国工程科学,2012(9):10-19.
16 Zhu Aijun , Hu Xiuqing , Lin Manyun ,et al .Global Data Acquisition Methods and Data Distribution for FY-3D Meteorological Satellite[J].Journal of Marine Meteorology,2018(3):1-10.朱爱军,胡秀清,林曼筠, 等 .风云三号D气象卫星全球数据获取方法及数据分发[J].海洋气象学报,2018(3):1-10.
17 Hu Xiuqing , Wu Ronghua .National Satellite Meteorological Centre. FY-3C Medium Resolution Spectrum Imager L1 Data[EB/OL].,2013.胡秀清,
17 吴荣华 .FY-3C 中分辨率光谱成像仪L1数据[EB/OL].,2013.
18 Yang Jun , Dong Chaohua ,et al .New Generation FengYun Polar-orbiting Meteorological Satellite Business Product and Application[M].Beijing:Science Press,2011:56-57. 杨军,董超华, 等 .新一代风云极轨气象卫星业务产品及应用[M].北京:科学出版社,2011:56-57.
19 Fan Jinglong , Zhang Yeping , Li Changbao ,et al .Systematic Analysis of Geometric Performance of Fengyun-3C MERSI Satellite Data Using Image Chip Matching Method[J].Remote Sensing Technology and Application,2018,33(4) :621-627.范锦龙,张晔萍,李昌宝, 等 .风云卫星中分辨率遥感数据几何定位误差分析[J].遥感技术与应用,2018,33(4):621-627.
20 Wen Jianguang , Liu Qiang , Xiao Qing ,et al .Remote Sensing Modeling of Surface Bidirectional Reflectance Characteristics and Retrieval of Albedo[M].Beijing:Science Press,2015:39-40.闻建光,刘强,肖青, 等 .陆表二向反射特性遥感建模及反照率反演[M].北京:科学出版社,2015:39-40
21 Roujean J L , Leroy M , Deschamps P Y .A Bidirectional Reflectance Model of the Earth's Surface for the Correction of Remote Sensing Data[J].Journal of Geophysical Research Atmospheres,1992,97(D18):20455-20468.
22 Lucht W , Schaaf C B , Strahler A H .An Algorithm for the Retrieval of Albedo from Space Using Semiempirical BRDF Models[J].IEEE Transactions on Geoscience & Remote Sensing,2002,38(2):977-998.
23 Wu Hongyi , Tong Ling , Chen Yunping .Evaluation of MODIS Shortwave Albedo Products over ChinaFLUX Sites[J].Remote Sensing Technology and Application,2012,27(5):735-739.吴宏伊, 童玲, 陈云坪.基于中国通量网的MODIS短波反照率验证与分析[J].遥感技术与应用,2012,27(5):735-739.
24 Schaaf C B , Gao F , Strahler A H ,et al .First Operational BRDF,Albedo Nadir Reflectance Products from MODIS[J].Remote Sensing of Environment,2002,83(1):135-148.
25 Lucht W , Lewis P .Theoretical Noise Sensitivity of BRDF and Albedo Retrieval from the EOS-MODIS and MISR Sensors with Respect to Angular Sampling[J].International Journal of Remote Sensing,2000,21(1):81-98.
[1] . A New Direct Solution of Range-Doppler model for SAR Image Location[J]. , , (): 0 .
[2] . Monitoring Surface Deformation in Changzhou City Using COSMO-SkyMed Data[J]. , , (): 0 .
[3] Rui YANG Su Yang. U-Net neural networks and its application in high resolution satellite image classification[J]. Remote Sensing Technology and Application, 0, (): 0 .
[4] . An improved Hyperspectral Image Clasification Algorithm Based On Multinomial Logistic Regression[J]. Remote Sensing Technology and Application, 0, (): 0 .
[5] yingchun Fu. A comparative study of urban heterogeneity vegetation coverage estimation model[J]. Remote Sensing Technology and Application, 0, (): 0 .
[6] . [J]. Remote Sensing Technology and Application, 1986, 1(1): 1 -7 .
[7] . [J]. Remote Sensing Technology and Application, 1986, 1(1): 8 -10 .
[8] . [J]. Remote Sensing Technology and Application, 1986, 1(1): 65 -66 .
[9] . [J]. Remote Sensing Technology and Application, 1987, 2(1): 40 -50 .
[10] . [J]. Remote Sensing Technology and Application, 1987, 2(2): 27 -24 .