1 |
Zhang Bing. Remotely sensed Big Data Era and intelligent information extraction[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1861-1871.
|
1 |
张兵 .遥感大数据时代与智能信息提取[J].武汉大学学报(信息科学版),2018, 43(12): 1861-1871.
|
2 |
Cheng G, Han J. A survey on object detection in optical remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2016,117:11-28. DOI: .
doi: 10.1016/j.isprs-jprs.2016.03.014
|
3 |
Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic Segmentatio[C]∥2014 IEEE Conference on Computer Vision and Pattern Recognition. DOI: .
doi: 10.1109/CVPR.2014.81
|
4 |
Girshick R. Fast R-CNN[C]∥Proceedings of 2015 IEEE In⁃ ternational Conference on Computer Vision. Santiago:IEEE,2015:1440-1448. DOI: .
doi: 10.1109/ICCV.2015.169
|
5 |
Dai J, Li Y, He K, et al. R-FCN: Object detection via region-based fully convolutional networks[J/OL].[2020-12-27]. .
|
6 |
Liu W, Anguelov D, Erhan D,et al. SSD:single shot multibox detector[M]. Computer Vision-ECCV 2016.Springer International Publishing,2016:21-37. DOI: .
doi: 10.1007/978-3-319-46448-0_2
|
7 |
Redmon J, Divvala S, Girshick R,et al. You only look once:unified,real-time object detection[C]∥IEEE Con ference on Computer Vision and Pattern Recognition. IEEE Computer Society,2016:779-788. DOI: .
doi: 10.1109/CVPR.2016.91
|
8 |
Fu C Y, Liu W, Ranga A, et al. DSSD: deconvolutional single shot detector[J/OL].[2021-04-24]. .
|
9 |
Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection[J/OL].[2020-12-27]. .
|
10 |
Redmon J, Farhadi A. YOLO9000: Better, Faster, Stronger[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE,2017: 6517-6525.
|
11 |
Ren S, He K, Girshick R, et al. Faster R-CNN: Towards feal-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. DOI: .
doi: 10.1109/TPAMI.2016.2577031
|
12 |
Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection[J/OL].[2020-12-27]. .
|
13 |
Redmon J, Farhadi A.YOLOv3: An incremental improvement[J/OL].[2020-12-27]..
|
14 |
Li K, Wan G, Cheng G, et al. Object detection in optical remote sensing images: A survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 296-307. DOI: .
doi: 10.1016/j.isprsjprs.2019.11.023
|
15 |
Ma W, Guo Q, Wu Y, et al. A novel multi-model decision fusion network for object detection in remote sensing images[J]. Remote Sensing, 2019, 11(7): 737. DOI: .
doi: 10.3390/rs11070737
|
16 |
Zhou P, Han J, Cheng G, et al. Learning compact and discriminative stacked autoencoder for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing,2019,57(7):4823-4833. DOI: .
doi: 10.1109/TGRS. 2019.2893180
|
17 |
Xie W, Yang J, Lei J, et al. SRUN: spectral regularized unsupervised networks for hyperspectral target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020,58(2):1463-1474. DOI: .
doi: 10.1109/TGRS.2019.2947033
|
18 |
Zhu D, Xia S, Zhao J, et al. Diverse sample generation with multi-branch conditional generative adversarial network for remote sensing objects detection[J]. Neurocomputing, 2020, 381: 40-51. DOI: .
doi: 10.1016/j.neucom.2019.10.065
|
19 |
Dong Z, Lin B. BMF-CNN: An object detection method based on multi-scale feature fusion in VHR remote sensing images[J].Remote Sensing Letters,2020,11(3):215-224. DOI: .
doi: 10.1080/2150704X.2019.1706007
|
20 |
Zhu M, Xu Y, Ma S, et al. Effective airplane detection in remote sensing images based on multilayer feature fusion and improved nonmaximal suppression algorithm[J]. Remote Sensing, 2019, 11(9): 1062. DOI: .
doi: 10.3390/rs11091062
|
21 |
Yang X, Sun H, Sun X, et al. Position detection and direction prediction for arbitrary-oriented ships via multitask rotation region convolutional neural network[J]. IEEE Access, 2018,6:50839-50849. DOI: .
doi: 10.1109/ACCESS.2018. 2869884
|
22 |
Zhu H, Zhang P, Wang L, et al. A Multiscale object detection approach for remote sensing images based on MSE-DenseNet and the dynamic anchor assignment[J]. Remote Sensing Letters,2019,10(10):959-967. DOI: .
doi: 10.1080/2150704X.2019.1633486
|
23 |
Zhuang S, Wang P, Jiang B, et al. A single shot framework with multi-scale feature fusion for geospatial object detection[J]. Remote Sensing, 2019, 11(5): 594. DOI: .
doi: 10.3390/rs11050594
|
24 |
Zhang X, Zhu K, Chen G, et al. Geospatial object detection on high resolution remote sensing imagery based on double multi-scale feature Pyramid network[J]. Remote Sensing, 2019, 11(7): 755. DOI: .
doi: 10.3390/rs11070755
|
25 |
Qiu H, Li H, Wu Q, et al. A2RMNet: Adaptively aspect ratio multi-scale network for object detection in remote sensing images[J].Remote Sensing,2019,11(13):1594. DOI: .
doi: 10.3390/ rs11131594
|
26 |
Cheng G, Si Y, Hong H, et al. Cross-scale feature fusion for object detection in optical remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters[J]. IEEE Geoscience and Remote Sensing Letters, 2020: 1-5. DOI: .
doi: 10.1109/LGRS.2020.2975541
|
27 |
Liu W, Rabinovich A, Berg A C. ParseNet: Looking wider to see better[J/OL]. [2020-12-27]. .
|
28 |
Zhang S, He G, Chen H B, et al. Scale adaptive proposal network for object detection in remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(6): 864-868. DOI: .
doi: 10.1109/LGRS.2018.2888887
|
29 |
Cheng G, Zhou P, Han J. Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12): 7405-7415. DOI: .
doi: 10.1109/TGRS.2016.2601622
|
30 |
Cheng G, Han J, Zhou P, et al. Learning rotation-invariant and fisher discriminative convolutional neural networks for object detection[J]. IEEE Transactions on Image Processing, 2019, 28(1): 265-278. DOI: .
doi: 10.1109/TIP.2018.2867198
|
31 |
Tang T, Zhou S, Deng Z, et al. Arbitrary-oriented vehicle detection in aerial imagery with single convolutional neural networks[J]. Remote Sensing,2017,9(11):1170. DOI: .
doi: 10.3390/rs9111170
|
32 |
Zhang Z, Guo W, Zhu S, et al. Toward arbitrary-oriented ship detection with rotated region proposal and discrimination networks[J]. IEEE Geoscience and Remote Sensing Letters, 2018,15(11):1745-1749. DOI: .
doi: 10.1109/LGRS. 2018. 2856921
|
33 |
Dong Z, Lin B. Learning a robust CNN-based rotation insensitive model for ship detection in VHR remote sensing images[J]. International Journal of Remote Sensing, 2020, 41(9): 3614-3626. DOI: .
doi: 10.1080/01431161.2019.1706781
|
34 |
Yu Y, Guan H, Li D, et al. Orientation guided anchoring for geospatial object detection from remote sensing imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 160: 67-82. DOI: .
doi: 10.1016/j.isprsjprs.2019.12.001
|
35 |
Mottaghi R, Chen X, Liu X, et al. The role of context for object detection and semantic segmentation in the wild[J]. Computer Vision and Pattern Recognition, 2014: 891-898. DOI: .
doi: 10.1109/CVPR.2014.119
|
36 |
Szegedy C, Liu W, Jia T Q, et al. Going deeper with convolutions[C]∥2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2015: 1-9. DOI: .
doi: 10.1109/CVPR.2015.7298594
|
37 |
Li K, Cheng G, Bu S, et al. Rotation-insensitive and context-augmented object detection in remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018,56(4):2337-2348. DOI: .
doi: 10.1109/TGRS. 2017. 2778300
|
38 |
Ren Y, Zhu C, Xiao S. Small object detection in optical remote sensing images via modified faster R-CNN[J]. Applied Sciences, 2018, 8(5): 813. DOI: .
doi: 10.3390/app8050813
|
39 |
Gong Y, Xiao Z, Tan X, et al. Context-aware donvolutional neural network for object detection in VHR remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing,2020,58(1):34-44. DOI: .
doi: 10.1109/TGRS. 2019. 2930246
|
40 |
Zhang G, Lu S, Zhang W. CAD-Net: A context-aware detection network for objects in remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019,57(12):10015-10024. DOI: .
doi: 10.1109/TGRS. 2019. 2930982
|
41 |
Chen S, Zhan R, Zhang J. Geospatial object detection in remote sensing imagery based on multiscale single-shot detector with activated semantics[J]. Remote Sensing, 2018, 10(6): 820. DOI: .
doi: 10.3390/rs10060820
|
42 |
Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018: 7132-7141. DOI: .
doi: 10.1109/CVPR.2018.00745
|
43 |
Pang J, Li C, Shi J, et al. R2CNN: Fast tiny object detection in large-scale remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8): 5512-5524. DOI: .
doi: 10.1109/TGRS.2019.2899955
|
44 |
Li H Y, Li C G, An J B, et al. Attention mechanism improves cnn remote sensing image object detection[J]. Journal of Image and Graphics, 2019, 24(8): 1400-1408.
|
44 |
李红艳,李春庚,安居白,等. 注意力机制改进卷积神经网络的遥感图像目标检测[J]. 中国图像图形学报, 2019,24(8): 1400-1408.
|
45 |
Zhou P, Cheng G, Liu Z, et al. Weakly supervised target detection in remote sensing images based on transferred deep features and negative bootstrapping[J]. Multidimensional Systems and Signal Processing, 2016, 27(4): 925-944. DOI: .
doi: 10.1007/s11045-015-0370-3
|
46 |
Zhong Y, Han X, Zhang L. Multi-class geospatial object detection based on a position-sensitive balancing framework for high spatial resolution remote sensing imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 138: 281-294. DOI: .
doi: 10.1016/j.isprsjprs.2018.02.014
|
47 |
Dong R, Xu D, Zhao J, et al. Sig-NMS-based faster R-CNN combining transfer learning for small target detection in VHR optical remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 8534-8545. DOI: .
doi: 10.1109/TGRS.2019.2921396
|
48 |
Han J, Zhang D, Cheng G, et al. Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(6): 3325-3337. DOI: .
doi: 10.1109/TGRS.2014.2374218
|
49 |
Zhou P, Zhang D, Cheng G, et al. Weakly supervised learning for target detection in remote sensing images[C]∥Proceedings - 2015 IEEE International Conference on Multimedia Big Data, BigMM 2015. IEEE, 2015: 318-323. DOI: .
doi: 10.1109/BigMM.2015.13
|
50 |
Zhang F, Du B, Zhang L, et al. Weakly supervised learning based on coupled convolutional neural networks for aircraft detection[J]. IEEE Transactions on Geoscience and Remote Sensing,2016,54(9):5553-5563. DOI: .
doi: 10.1109/TGRS. 2016. 2569141
|
51 |
Li W, Wu G, Du Q. Transferred deep learning for anomaly detection in hyperspectral imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(5): 597-601. DOI: .
doi: 10.1109/LGRS.2017.2657818
|
52 |
Cheng G, Li Z, Han J, et al. Exploring hierarchical convolutional features for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(11): 6712-6722. DOI: .
doi: 10.1109/TGRS.2018.2841823
|
53 |
Ding J, Chen B, Liu H, et al. Convolutional neural network with data augmentation for SAR target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(3): 364-368. DOI: .
doi: 10.1109/LGRS.2015.2513754
|
54 |
Liu Y, Zhang M, Xu P, et al. SAR Ship Detection using sea-land segmentation-based donvolutional neural network[C]∥2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP). IEEE, 2017: 1-4. DOI: .
doi: 10.1109/RSIP.2017.7958806
|
55 |
Wang Y, Wang C, Zhang H. Combining a single shot multibox detector with transfer learning for ship detection using sentinel-1 SAR images[J]. Remote Sensing Letters, 2018, 9(8): 780-788. DOI: .
doi: 10.1080/2150704X.2018.1475770
|
56 |
Zhao J, Zhang Z, Yu W, et al. A cascade coupled convolutional neural network guided visual attention method for ship detection from SAR images[J]. IEEE Access, 2018, 6: 50693-50708. DOI: .
doi: 10.1109/ACCESS.2018.2869289
|
57 |
Fan Q, Chen F, Cheng M, et al. Ship detection using a fully convolutional network with compact polarimetric SAR images[J]. Remote Sensing, 2019, 11(18). DOI: .
doi: 10.3390/rs 11182171
|
58 |
Lin Z, Ji K, Leng X, et al. Squeeze and excitation rank faster R-CNN for ship detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(5): 751-755. DOI: .
doi: 10.1109/LGRS.2018.2882551
|
59 |
Liu N, Cao Z, Cui Z, et al. Multi-scale proposal generation for ship detection in SAR images[J]. Remote Sensing, 2019, 11(5). DOI: .
doi: 10.3390/rs11050526
|
60 |
Wei S, Su H, Ming J, et al. Precise and robust ship detection for high-resolution SAR imagery rased on HR-SDNet[J].Remote Sensing,2020,12(1):167. DOI: .
doi: 10.3390/rs12010167
|
61 |
Chen L, Tan S, Pan Z, et al. A New framework for automatic airports extraction from SAR images using multi-level dual attention mechanism[J]. Remote Sensing, 2020, 12(3). DOI: .
doi: 10.3390/rs12030560
|
62 |
Yang J, Zhu Y, Jiang B, et al. Aircraft detection in remote sensing images based on a deep residual network and super-vector coding[J]. Remote Sensing Letters, 2018, 9(3): 229-237. DOI: .
doi: 10.1080/2150704X.2017.1415474
|
63 |
Wu X, Hong D, Tian J, et al. ORSIm detector: A novel object detection framework in optical remote sensing imagery using spatial-frequency channel features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(7): 5146-5158. DOI: .
doi: 10.1109/TGRS.2019.2897139
|
64 |
Chen Z, Zhang T, Ouyang C. End-to-End airplane detection using transfer learning in remote sensing images[J]. Remote Sensing, 2018, 10(1): 139. DOI: .
doi: 10.3390/rs10010139
|
65 |
Lin Na, Feng Lirong, Zhang Xiaoqing. Aircraft detection in remote sensing image based on optimized Faster-RCNN[J]. Remote Sensing Technology and Application,2021,36(2): 275-284.林娜, 冯丽蓉, 张小青. 基于优化Faster-RCNN的遥感影像飞机检测. 遥感技术与应用[J], 2021, 36(2): 275-284.
|
66 |
Yang Y, Zhuang Y, Bi F, et al. M-FCN: Effective fully convolutional network-based airplane detection framework[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(8): 1293-1297. DOI: .
doi: 10.1109/LGRS.2017.2708722
|
67 |
Lin H, Shi Z, Zou Z.Fully convolutional network with task partitioning for inshore ship detection in optical remote sensing Ima-ges[J]. IEEE Geoscience and Remote Sensing Letters, 2017,14(10):1665-1669. DOI: .
doi: 10.1109/LGRS. 2017. 2727515
|
68 |
Kang M, Lin Z, Leng X G, et al. A modified faster R-CNN based on CFAR algorithm for SAR ship detection[C]∥2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP).IEEE,2017:1-4. DOI: .
doi: 10.1109/RSIP. 2017.7958815
|
69 |
Chen P, Li Y, Zhou H, et al. Detection of small ship objects using anchor boxes cluster and feature pyramid network model for SAR imagery[J]. Journal of Marine Science and Engineering, 2020, 8(2). DOI: .
doi: 10.3390/jmse8020112
|
70 |
Li Q, Mou L, Liu Q, et al. HSF-Net: Multiscale deep feature embedding for ship detection in optical remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing,2018,56(12):7147-7161. DOI: .
doi: 10.1109/TGRS. 2018. 2848901
|
71 |
Liu Z, Wang H, Weng L, et al. Ship rotated bounding box space for ship extraction from high-resolution optical satellite images with complex backgrounds[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(8): 1074-1078. DOI: .
doi: 10.1109/LGRS.2016.2565705
|
72 |
Yang X, Sun H, Fu K, et al. Automatic ship detection in remote sensing images from Google Earth of complex scenes based on multiscale rotation dense feature Pyramid networks[J]. Remote Sensing, 2018, 10(1): 1-14. DOI: .
doi: 10.3390/rs10010132
|
73 |
Deng Z, Sun H, Zhou S, et al. Toward fast and accurate vehicle detection in aerial images using coupled region-based convolutional neural networks[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(8): 3652-3664. DOI: .
doi: 10.1109/JSTARS.2017.2694890
|
74 |
Yang C, Li W, Lin Z. Vehicle object detection in remote sensing imagery based on multi-perspective convolutional neural network[J]. ISPRS International Journal of Geo-Information, 2018, 7(7): 249. DOI: .
doi: 10.3390/ijgi7070249
|
75 |
Mandal M, Shah M, Meena P, et al. AVDNet: A small-sized vehicle detection network for aerial visual data[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(3): 494-498. DOI: .
doi: 10.1109/LGRS.2019.2923564
|
76 |
Yu Y, Gu T, Guan H, et al. Vehicle detection from high-resolution remote sensing imagery using convolutional capsule networks[J]. IEEE Geoscience and Remote Sensing Letters, 2019,16(12):1894-1898. DOI: .
doi: 10.1109/LGRS. 2019. 2912582
|
77 |
Cai B, Jiang Z, Zhang H, et al. Airport detection using end-to-end convolutional neural network with hard example mining[J]. Remote Sensing, 2017, 9(11): 1-20. DOI: .
doi: 10.3390/rs9111198
|
78 |
Xiao Z, Gong Y, Long Y, et al. Airport detection based on a multiscale fusion feature for optical remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(9): 1469-1473. DOI: .
doi: 10.1109/LGRS.2017.2712638
|
79 |
Xu Y, Zhu M, Li S, et al. End-to-end airport detection in remote sensing images combining cascade region proposal networks and multi-threshold detection networks[J]. Remote Sensing, 2018, 10(10): 1-17. DOI: .
doi: 10.3390/rs10101516
|
80 |
Li S, Xu Y, Zhu M, et al. Remote sensing airport detection based on end-to-end deep transferable convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2019: 1-5. DOI: .
doi: 10.1109/LGRS.2019.2904076
|
81 |
Zeng F, Cheng L, Li N, et al. A hierarchical airport detection method using spatial analysis and deep learning[J]. Remote Sensing, 2019, 11(19): 2204. DOI: .
doi: 10.3390/rs11192204
|
82 |
Li Z, Zhu R, Ma J, et al. Airport detection method combined with continuous learning of residual-based network on remote sensing image[J]. Acta Optica Sinica, 2020, 40(16): 179-191.
|
82 |
李竺强, 朱瑞飞, 马经宇, 等. 联合连续学习下的残差网络遥感影像机场目标检测 方法[J]. 光学学报, 2020, 40(16): 179-191.
|
83 |
Hui J, Du M, Ye X, et al. Effective building extraction from high-resolution remote sensing images with multitask driven deep neural network[J]. IEEE Geoscience and Remote Sensing Letters,2019,16(5):786-790. DOI: .
doi: 10.1109/LGRS. 2018.2880986
|
84 |
Ma H, Liu Y, Ren Y, et al. Detection of collapsed buildings in post-earthquake remote sensing images based on the improved YOLOv3[J]. Remote Sensing, 2020, 12(1): 44. DOI: .
doi: 10.3390/rs12010044
|
85 |
Chen S, Wang H, Xu F, et al. Target classification using the deep convolutional networks for SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4806-4817. DOI: .
doi: 10.1109/TGRS.2016.2551720
|
86 |
Han Y, Wei C, Zhou R, et al. Combining 3D-CNN and squeeze-and-excitation networks for remote sensing sea ice image classification[J]. Mathematical Problems in Engineering, 2020, 2020: 1-15. DOI: .
doi: 10.1155/2020/8065396
|
87 |
Nieto-Hidalgo M, Gallego A, Gil P, et al. Two-stage convolutional neural network for ship and spill detection using SLAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(9): 5217-5230. DOI: .
doi: 10.1109/TGRS.2018.2812619
|
88 |
Zeng K, Wang Y. A deep Convolutional Neural Network for oil spill detection from spaceborne SAR images[J]. Remote Sensing, 2020, 12: 1015. DOI: .
doi: 10.3390/rs12061015
|
89 |
Hill P R, Kumar A, Temimi M, et al. HABNet: Machine learning, remote sensing-based detection of harmful algal blooms[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 3229-3239. DOI: .
doi: 10.1109/JSTARS.2020.3001445
|
90 |
Cheng G, Han J, Zhou P, et al. Multi-class geospatial object detection and geographic image classification based on collection of part detectors[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 98: 119-132. DOI: .
doi: 10.1016/j.isprsjprs.2014.10.002
|
91 |
Zhu H, Chen X, Dai W, et al. Orientation robust object detection in aerial images using deep convolutional neural network[C]∥IEEE International Conference on Image Processing.IEEE,2015:3735-3739. DOI: .
doi: 10.1109/ICIP. 2015. 7351502
|
92 |
Xiao Z, Liu Q, Tang G, et al. Elliptic fourier transformation-based histograms of oriented gradients for rotationally invariant object detection in remote-sensing images[J]. International Journal of Remote Sensing, 2015, 36(2): 618-644. DOI: .
doi: 10.1080/01431161.2014.999881
|
93 |
Liu Z, Yuan L, Weng L, et al. A high resolution optical satellite image dataset for ship recognition and some new baselines[C]∥International Conference on Pattern Recognition Applications & Methods. DOI: .
doi: 10.5220/0006120603240331
|
94 |
Zou Z, Shi Z. Random access memories: A new paradigm for target detection in high resolution aerial remote sensing images[J]. IEEE Transactions on Image Processing, 2018, 27(3): 1100-1111. DOI: .
doi: 10.1109/TIP.2017.2773199
|
95 |
Xia G S, Bai X, Ding J, et al. DOTA: A large-scale dataset for object detection in aerial images[J]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2018: 3974-3983. DOI: .
doi: 10.1109/CVPR.2018.00418
|
96 |
Li J, Qu C, Shao J. Ship detection in SAR images based on an improved faster R-CNN[C]∥SAR in Big Data Era: Models,Methods and Applications, BIGSARDATA 2017. IEEE,2017:1-6. DOI: .
doi: 10.1109/BIGSARDATA.2017.8124934
|
97 |
Wang Y, Wang C, Zhang H, et al. A SAR dataset of ship detection for deep learning under complex backgrounds[J]. Remote Sensing, 2019, 11(7). DOI: .
doi: 10.3390/rs11070765
|
98 |
Wei S, Zeng X, Qu Q, et al. HRSID: A high-resolution SAR images dataset for ship detection and instance segmentation[J].IEEE Access,2020,8:120234-120254. DOI: .
doi: 10.1109/ ACCESS.2020.3005861
|
99 |
Yin W, Diao W, Wang P, et al. PCAN—part-based context attention network for thermal power plant detection in remote sensing imagery[J]. Remote Sensing, 2021, 13(7): 1243. DOI: .
doi: 10.3390/rs13071243
|
100 |
Sun X, Wang P, Wang C, et al. PBNet: Part-based convolutional neural network for complex composite object detection in remote sensing imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2021,173:50-65. DOI: .
doi: 10.1016/j.isprsjprs.2020.12.015
|
101 |
Fu H, Fan X, Yan Z, et al. Detection of schools in remote sensing images based on attention-guided dense network[J]. ISPRS International Journal of Geo-Information, 2021, 10(11): 736[2021-11-01]. DOI: .
doi: 10.3390/ijgi10110736
|
102 |
Ghiasi G, Lin T, Le Q V. NAS-FPN: Learning scalable feature Pyramid architecture for object detection[C]∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). DOI: .
doi: 10.1109/CVPR.2019.00720
|