Please wait a minute...
img

Wechat

Remote Sensing Technology and Application  2022, Vol. 37 Issue (2): 460-473    DOI: 10.11873/j.issn.1004-0323.2022.2.0460
    
The Study on Land Subsidence in Kunming by Integrating PS, SBAS and DS InSAR
Shipeng Guo1(),Wangfei Zhang2(),Wei Kang1,Tingwei Zhang2,Yun Li2
1.College of Geography and Ecotourism,Southwest Forestry University,Kunming 650224,China
2.College of Forestry,Southwest Forestry University,Kunming 650224,China
Download:  HTML  PDF (11299KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Time-series InSAR technology provides an effective method for monitoring and controlling land subsidence in Kunming city. However, the defects of PS-InSAR and SBAS-InSAR technology limit the monitoring accuracy, especially the low coherence of PS points caused by complex terrain. In this paper, we proposed InSAR technique combining PS, SBAS and DS to monitor the subsidence in Kunming urban area, and the results of the proposed method are compared with PS+SBAS-InSAR. The results show that the proposed method is in good agreement with the results of the Kunming subsidence rate inversion by PS+SBAS-InSAR, and the proposed method can enhance the spatial distribution density of the points in the observation area and obtain more effective surface deformation information. From the perspective of the whole study area, the subsidence rate of the urban surface of Kunming city is -22~8 mm/a, and the serious subsidence areas are concentrated in Guandu District, Xishan District and Wuhua District, and several subsidence funnels have been formed. Since 1989, Xiaobanqiao and Hewei Village are still the two most serious subsidence funnel centers, while Jiangjiaying in the northeast is the new subsidence point found in this study. Combined with the analysis of historical data, it is shown that the ground subsidence in Kunming is mainly affected by groundwater pumping, building load, engineering construction and tectonic movement of faulted basin.

Key words:  Surface deformation      Combining      DS      Kunming      The subsidence funnel     
Received:  24 February 2021      Published:  17 June 2022
ZTFLH:  P237  
Corresponding Authors:  Wangfei Zhang     E-mail:  gsp18360576907@163.com;mewhff@163.com
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Shipeng Guo
Wangfei Zhang
Wei Kang
Tingwei Zhang
Yun Li

Cite this article: 

Shipeng Guo,Wangfei Zhang,Wei Kang,Tingwei Zhang,Yun Li. The Study on Land Subsidence in Kunming by Integrating PS, SBAS and DS InSAR. Remote Sensing Technology and Application, 2022, 37(2): 460-473.

URL: 

http://www.rsta.ac.cn/EN/10.11873/j.issn.1004-0323.2022.2.0460     OR     http://www.rsta.ac.cn/EN/Y2022/V37/I2/460

Fig.1  Study area
序列数据时间T/dBp/m序列数据时间T/dBp/m
12017-03-15-576-19.381 7192018-09-1824-42.419 2
22017-04-08-5520.927 720*2018-10-1200
32017-05-14-5163.264 7212018-11-1736-43.542 4
42017-06-19-480-31.757 5222018-12-1160-75.667 5
52017-07-25-444-71.943 7232019-01-1696-51.437 7
62017-08-18-420-46.929242019-02-09122-61.734
72017-09-23-384-41.817 4252019-03-29168-30.488 8
82017-10-05-372-32.062 4262019-04-2219230.519 3
92017-11-22-324-3.944272019-05-0420434.326 8
102017-12-16-300-13.059 7282019-06-09240-143.678 2
112018-01-09-276-58.746 8292019-07-03264-31.153 2
122018-02-14-24022.946 9302019-08-08300-19.360 4
132018-03-22-204-167.78312019-09-13336-78.614 4
142018-04-27168-22.75322019-10-07360-47.098 5
152018-05-21-144-69.516332019-11-24408-8.560 3
162018-06-26-108-14.748 9342019-12-06420-80.196 4
172018-07-20-84-67.381 1352020-01-1145640.489 1
182018-08-13-60-60.850 1362020-02-16492-83.256 0
Table 1  Sentinel-1A data list
Fig.2  Temporal and spatial baseline distribution of SAR
Fig.3  The Time series InSAR flow chart
主影像辅影像时间基线/d空间基线/m
第一组PS-InSAR方法2018101220171005-420-46.93
本文方法201810122018111736-43.54
第二组PS-InSAR方法2018101220190913336-78.61
本文方法201810122018121160-75.67
Table 2  List of time and empty baselines for two sets of data
Fig.4  Coherence comparison of different methods
Fig. 5  Phase standard deviation of PS points
PS+SBASPS+SBAS+DS
PS点sigma值平均值标准差PS点sigma值平均值标准差
第一次迭代4761480~1.2350.0410.16811333490~1.2670.1460.303
第二次迭代4776770~1.2400.0390.16011143240~1.2540.1400.283
第三次迭代4804090~1.2200.0340.14311284840~1.2410.1000.218
Table 3  PS point phase results of the two MT-InSAR technologies
Fig. 6  Comparison of elevation corrections between the two MT-InSAR methods
Fig.7  Deformation rate results of two time series InSAR
Fig.8  Settlement amount and deformation point distribution in Xiaobanqiao and Hewei Village
Fig.9  Displacement of PS points varies with time
Fig. 10  Variation of average annual settlement rate in Hewei Village and Xiaobanqiao

时间

沉降区

1987~19941994~19982007~20082008~20102014-2017本文(2017~2020)

速率

mm/a

速率

mm/a

速率

mm/a

速率

mm/a

速率

mm/a

速率

mm/a

广卫村-20-20.3----21.4
渔户村-6.4-12.6----27.8
小板桥-16.0-31.1-21.6-20.2-54.2-48.9
河尾村-2.5-25.1-27.5-26.1-23.7-25.6
罗家村-----29.3-25.1
曹家村-----27.1-23
东菊新村---24.6-25.5-25.4-17.3
小渔村---26.4-23.3-17.4-22.3
Table 4  Surface settlement changes of Kunming villages in different periods (Units:mm/a)
Fig. 11  Settlement rate distribution of villages
1 Qingli L, Daniele P, Yuanzhi Z, et al. L- and X-band multi-temporal InSAR analysis of Tianjin subsidence[J]. Remote Sensing, 2014, 6:7933-7951.DOI: .
doi: 10.3390/rs6097933
2 Xue Chuandong, Liu Xing, Li Baozhu, et al. Mechanism analysis of land subsidence in Kunming City area[J]. The Chinese Journal of Geological Hazard and Control, 2004, 15(3):47-50.
2 薛传东,刘星,李保珠,等 .昆明市区地面沉降的机理分析[J]. 中国地质灾害与防治学报, 2004, 15(3):47-50.
3 Jiang Chaosong, Shao Desheng, Fan Youxin, et al. Development process and characteristics of land subsidence in Kunming[J].Journal of Seismological Research,2001,24(1):55-60.
3 姜朝松,邵德晟,樊友心,等. 昆明市地面沉降发展过程及其特征[J]. 地震研究,2001,24(1):55-60.
4 Huang Kun, Wan Jiangping, Wu Binsheng. Recent up and down ground motion in Kunming area and its analysis[J], Journal of Seismological Research, 1989, 12(3): 249-250.
4 黄琨,万建平,吴彬生 .昆明地区近期地面垂直升降运动及分析[J] .地震研究, 1989, 12(3):249-250.
5 Zhu Jianjun, Li Zhiwei, Hu Jun. Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1717-1733.
5 朱建军,李志伟,胡俊 .InSAR变形监测方法与研究进展[J].测绘学报, 2017, 46(10):1717-1733.
6 Ferretti A, Prati C, Rocca F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry [J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5):2202-2212. DOI: .
doi: 10.1109/36.868878
7 Berardino P, Fornaro G, Lanari R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2375-2383.DOI: .
doi: 10.1109/tgrs.2002.803792
8 Hooper A. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches[J]. Geophysical Research Letter,2008,35:L16302.DOI: .
doi: 10.1029/2008g1034654
9 Ferretti A, Prati C, Rocca F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing,2000,38(5):2202-2212.DOI: .
doi: 10.1109/36.868878
10 Li Guangyu, Zhang Rui, Liu Guoxiang, et al .Land subsidence detection and analysis over Beijing-Tianjin-Hebei area based on Sentinel-1A TS-DInSAR[J]. Journal of Remote Sensing, 2018, 22(4):633-646.
10 李广宇,张瑞,刘国祥,等. Sentinel-1A TS-DInSAR京津冀地区沉降监测与分析[J].遥感学报, 2018, 22(4):633-646.
11 Berardino P, Fornaro G, Lanari R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2375-2383.DOI: .
doi: 10.1109/tgrs.2002.803792
12 Liu Limin, Gong Huili, Yu Jie, et al .Stable pointwise target detection method and small baseline subset INSAR used in beijing subsidence monitoring[J]. Journal of Remote Sensing, 2016,20(4):643-652.
12 刘利敏,宫辉力,余洁,等.短基线INSAR相干点探测及应用[J].遥感学报,2016,20(4):643-652.
13 Wang Yimei, Luo Xiaojun, Yu Bing, et al .Monitoring ground subsidence in Zhengzhou with InSAR[J]. Science of Surverying and Mapping, 2019, 44(9):100-106.
13 王义梅,罗小军,于冰,等. 郑州市地面沉降InSAR监测[J].测绘科学, 2019, 44(9):100-106.
14 Zhu Meng, Dong Shaochun, Yin Hongwei, et al .Spatial-temporal ground deformation study of Suzhou area from 2007 to 2010 based on the SBAS InSAR method[J]. Journal of Geo-information Science, 2016, 18(10):1418-1427.
14 朱猛,董少春,尹宏伟,等 .基于SBAS InSAR方法的苏州地区2007-2010年地表形变时空变化研究[J].地球信息科学学报, 2016, 18(10):1418-1427.
15 Ferretti A, Fumagalli A, Novell F, et al. A new algorithm for processing interferometric data-stacks: SqueeSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9):3460-3470.DOI: .
doi: 10.1109/tgrs.2011.2124465
16 Hooper A. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches[J].geophysical Research letter,2008,35:L16302. DOI: .
doi: 10.1029/2008g1034654
17 Ma Yuanyuan, Chen Yunbo, Zuo Xiaoqing, et al. Ground surface settlement monitoring by spaceborne InSAR technology in Kunming[J]. Surveying and Mapping Bulletin, 2018(6):55-60.
17 麻源源,陈云波,左小清,等 .星载InSAR技术支持下的昆明地表沉降监测[J]. 测绘通报, 2018(6):55-60.
18 Zhang Jianming, Gan Shu, Yuan Xiping, et al. The extraction and analysis of Kunming ground deformation characteristics based on PS-InSAR[J]. Science of Surveying and Mapping, 2019, 44(1):54-57.
18 张荐铭,甘淑,袁希平,等. PS-InSAR技术的昆明地表沉降特征提取与分析[J].测绘科学, 2019, 44(1):54-57.
19 Yin Zhenxing, Zhong Liyun, Xu Bing, et al .SBAS-InSAR monitoring of land subsidence in Kunming[J]. Surveying and Mapping of Geology and Mineral Resources, 2016, 32(4):1-5.
19 尹振兴,钟丽云,许兵,等 .基于SBAS-InSAR的昆明地面沉降监测研究[J].地矿测绘, 2016, 32(4):1-5.
20 Meng Guotao, Li Feng. A case study of Llnd subsidence in Southern Kunming downtown area[J]. Hydrogeology Engineering Geology, 2007, 1:30-33.
20 孟国涛,李峰. 昆明南市区地面沉降研究[J]. 水文地质工程地质, 2007, 1:30-33.
21 Dai Keren, Yongbo Tie, Xu Qiang, et al. Early identification of potential landslide geohazards in Alpine-canyon terrain based on SAR interferometry—A case study of the Mmddle section of Yalong River [J]. Journal of Radars, 2020, 9(3): 554-568.
21 戴可人,铁永波,许强,等.高山峡谷区滑坡灾害隐患InSAR早期识别—以雅砻江中段为例[J].雷达学报, 2020, 9(3):554-568.
22 Zhou Chuanyi, Liu Guolin, Chen Yang,et al. Analysis of the source parameters of 2017 Iraq Mw7.3 Earthquake using Sentinel-1A InSAR data[J]. Journal of Geodesy and Geodyna-Mics, 2019, 39(6):577-581.
22 周传义,刘国林,陈洋,等. 基于升降轨Sentinel-1数据分析2017-11-12伊拉克Mw7.3地震震源参数[J].大地测量与地球动力学, 2019, 39(6):577-581.
23 Liu Chuanjin, Qiu Jiangtao, Wang Jinshuo. The 2017 Jinghe MS6.6 Earthquake inversion from ascending and descending Sentinel-1 observations[J]. Journal of Geodesy and Geodynamics,2018, 38(11):1111-1115.
23 刘传金,邱江涛,王金烁. 基于升降轨Sentinel-1SAR影像研究精河MS6.6地震震源机制[J].大地测量与地球动力学, 2018, 38(11):1111-1115.
24 Xiao Yao,Zhaoping, Fan Zelin,et al. Application of TerraSAR-X data for subsidence monitoring in huainan mining area[J]. Remote Sensing Technology and Application, 2017, 32(1):95-103.
24 肖瑶,赵萍,范泽琳,等. TerraSAR-X数据在淮南矿区沉陷监测中的应用[J]. 遥感技术与应用, 2017, 32(1):95-103.
25 Massonnet D, Briole P, Arnaud A. Deflation of mount etna monitored by space-borne radar interferometry [J]. Nature, 1995, 375:567-569. DOI: .
doi: 10.1038/375567a0
26 Can S A. Application of Synthetic Aperture Radar (SAR) imagery to volcano mapping in the Humid tropics: a case study in East Java[J]. Bulletin of Volcanology,1999,61:1-2. DOI: .
doi: 10.1007/s004450050265
27 Wang Qun, Zhang Yunling, Fan jinghui, et al. Monitoring the motion of the Yiga Glacier using GF‑3 images[J].Geomatics and Information Science of Wuhan University, 2020, 45(3):460-463.
27 王群,张蕴灵,范景辉,等.利用高分三号影像监测依嘎冰川表面运动[J].武汉大学学报, ∙ 信息科学版2020, 45(3):460-463.
28 Fan Jinghui, Qiu Kuotian, Xia Ye, et al. InSAR monitoring and synthetic analysis of the surface deformation of Fanjiaping landslide in the Three Gorges Reservoir area[J]. Geological Bulletin of China, 2017, 36(9): 1665-1673.
28 范景辉,邱阔天,夏耶,等.三峡库区范家坪滑坡地表形变InSAR监测与综合分析[J].地质通报,2017,36(9):1666-1673.
[1] Yang Shuangbao,Zhai Zhenhe,Xu Ke,Wang Zhisen,Shi Lingwei,Wang Lei,Cui Haiying,Xu Xiyu. The Ground Process Segment of SAR Altimeter[J]. Remote Sensing Technology and Application, 2017, 32(6): 1083 -1092 .
[2] . Remote Sensing Image Registration Based on SIFT and Mutual Information Screening Optimization[J]. Remote Sensing Technology and Application, 0, (): 0 .
[3] Li Yachun,Wang Jing,Xie Zhiqing,Xie Xiaoping. Integrated Application of Multi-sources Remotely Sensed Imagery in  Cyanobacteria  Bloom Monitoring[J]. Remote Sensing Technology and Application, 2013, 28(4): 569 -575 .
[4] . Cross-validation Analysis of Sea Surface Wind and Significant Wave Height over the Arctic from the Autonomous HY-2B Satellite[J]. Remote Sensing Technology and Application, 0, (): 465 -0 .
[5] Yongkang Li,Xinjun Wang,Yanfei Ma,Bei Chen,Linan Yan,Guanhong Zhang. Downscaling Land Surface Temperature through AMSR-2 Observations by Using Machine Learning Algorithms[J]. Remote Sensing Technology and Application, 2022, 37(2): 474 -487 .
[6] Jiapei Ma,Hongyi Li. Frequency Distribution Improved and Wind-induced Undercatch Corrected Gridded Precipitation for Tibetan Plateau (1980~2009)[J]. Remote Sensing Technology and Application, 2022, 37(2): 507 -514 .
[7] Na Liu,Fengli Zhang,Zhikun Li,Yun Shao,Lei Pang,Lu Li. Updating of Built-up Areas based on SAR and Night Light Data and Its Optimization for WRF Model Wind Field Simulation[J]. Remote Sensing Technology and Application, 2022, 37(2): 488 -498 .
[8] Bingxue Fu,Jichao Zhang,Wenjie Du,Penglong Wang,Zhongchang Sun. Effective and Novel Impervious Surface Fine Mapping Method and Its Application on Monitoring Urban Sustainable Development Goals[J]. Remote Sensing Technology and Application, 2021, 36(6): 1339 -1349 .
[9] Qian Liu,Xinyu Hu,Xiaotong Li,Xianlin Qin. Building Recognition Method in Forest Districts Combining the Pixel-level and Object-level[J]. Remote Sensing Technology and Application, 2021, 36(6): 1350 -1357 .
[10] Jie Li,Kun Jia,Ning Zhang,Xiangqin Wei,Bing Wang. Evaluation of Ecological Protection Importance in Qingdao based on Remote Sensing and Ecological Service Model[J]. Remote Sensing Technology and Application, 2021, 36(6): 1329 -1338 .