Please wait a minute...
img

Wechat

Remote Sensing Technology and Application  2022, Vol. 37 Issue (3): 550-563    DOI: 10.11873/j.issn.1004-0323.2022.3.0550
    
The Use of Time Series Remote Sensing Data to Analyze the Characteristics of Non-agriculture Farmland and Their Driving Factors in Fuzhou
Shupei Ding1(),Mengmeng Li1(),Xiaoqin Wang1,Lin Li1,Ruijiao Wu2,Heng Huang2
1.Key Laboratory of Spatial Data Mining and Information Sharing of Ministry of Education,National & Local Joint Engineering Research Center of Satellite Geospatial Information Technology,Fuzhou University,The Academy of Digital China (Fujian),Fuzhou University,Fuzhou 350108,China
2.Fujian Geologic Surveying and Mapping Institute,Fuzhou 350108,China
Download:  HTML  PDF (8042KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Farmland is important for food production. It is thus of great importance to obtain timely and accurate information regarding non-agricultural farmlands for land resource management and policymaking. To investigate the changes of non-agricultural farmlands in Fuzhou over past 30 years, this study extracted the spatial information of farmlands using multi-temporal Landsat remote sensing images in 1989, 2000, 2010 and 2019 based on the Google Earth Engine (GEE) and random forest methods. We then used land transfer matrix, grid element method and geographic detector techniques to analyze the characteristics and driving factors of non-agricultural farmlands changes. The results show that: (1) The GEE platform integrating with random forest is suitable to extract farmlands in cloudy and rainy areas in southern part of China. The overall accuracy of the extracted farmlands is higher than 90%, and the Kappa coefficient is greater than 0.85. (2) The farmlands in Fuzhou has an imbalanced spatial distribution, where the area of farmlands deceases from east to west along time. From 1989 to 2019, the farmland changes mainly occurred at areas with an elevation of 100 m and a slope of less than 10°. The changed farmlands mainly consisted of forestlands and construction lands, in which the western region was mainly forestland, and the central and eastern region was construction land. (3) The natural factors are the prerequisite for the conversion of cultivated land, and the growth rate of urbanization and population data are the main driving factors. Moreover, urbanization rate and the proportion of primary industry growth rate were the factors forming the “fast-slow-stable” pattern of farmland non-agriculturalization.

Key words:  Non-agricultural farmlands      Multi-temporal remote sensing      Random forest      GEE      Geographic detector     
Received:  13 August 2021      Published:  25 August 2022
ZTFLH:  S127  
Corresponding Authors:  Mengmeng Li     E-mail:  N195520005@fzu.edu.cn;mli@fzu.edu.cn
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Shupei Ding
Mengmeng Li
Xiaoqin Wang
Lin Li
Ruijiao Wu
Heng Huang

Cite this article: 

Shupei Ding,Mengmeng Li,Xiaoqin Wang,Lin Li,Ruijiao Wu,Heng Huang. The Use of Time Series Remote Sensing Data to Analyze the Characteristics of Non-agriculture Farmland and Their Driving Factors in Fuzhou. Remote Sensing Technology and Application, 2022, 37(3): 550-563.

URL: 

http://www.rsta.ac.cn/EN/10.11873/j.issn.1004-0323.2022.3.0550     OR     http://www.rsta.ac.cn/EN/Y2022/V37/I3/550

Fig.1  The intensity pattern among the central plains economic zone
因素类型指标指标描述数据来源
社会因子人口数量增长率/%反映地区人口规模变化,人口增长会引起土地资源压力

《福州年鉴》

《福州统计年鉴》

城镇化增长率/%反映城市化水平的重要指标
第一产业比重增长率/%反映农业在社会经济发展中的重要性
GDP增长率/%反映社会经济发展的重要指标
到公路距离/m公路是人类活动地域联系重要载体国家基础地理信息中心
到铁路距离/m铁路是人类活动地域联系重要载体
到城镇距离/m城镇驻点反映人类活动的地点
自然因子到水系距离/m水源对于农作物灌溉有着重要的作用
高程/m耕地主要分布在海拔相对较为平坦区域GEE平台
坡度/°坡度大小影响农业生产中机械化水平
坡向/°坡向的不同对于农作物生长产生一定的影响
土壤类型不同土壤类型理化性质,影响土地利用变化中国科学院资源环境数据云平台
Table 1  Indicators of driving factors of farmland conversion
Fig.2  Flowchart of non-agriculture farmland analysis method in Fuzhou
Fig.3  Spatial distribution of land use in Fuzhou from 1989 to 2019
类型1989年2000年2010年2019年

UA

/%

PA

/%

UA/%

PA

/%

UA

/%

PA

/%

UA

/%

PA

/%

耕地89.7087.1489.1890.4193.3394.2285.5793.87
园林地93.4295.9496.8710098.4695.529894.23
水体96.4210010010097.6696.59100100
建设用地97.9110089.7483.5382.3595.4585.4585.45
未利用地87.580.767572.729269.7083.3371.42
整体精度/%93.0390.3591.4790.94
Kappa系数0.910.870.890.87
Table 2  Land use classification accuracy
Fig.4  Comparison of classification results
Fig.5  Non-agricultural transfer types of farmland in Fuzhou from 1989 to 2019
Fig.6  Spatial distribution of non-agriculture farmland in Fuzhou from 1989 to 2000
Fig. 7  Relationship between non-agriculture farmland and elevation and slope during 1989~2019
Fig.8  Grid diagram of farmland conversion in Fuzhou from 1989 to 2019
驱动因子1989~2000年2000~2010年2010~2019年1989~2019年
Q值重要性Q值重要性Q值重要性Q值重要性
人口数量增长率0.059 990.068 5100.249 130.231 04
城镇化增长率0.200 320.195 620.132 080.082 69
第一产业比重增长率0.123 730.120 170.115 3100.085 18
GDP增长率0.059 5100.172 140.161 750.082 210
到公路距离0.115 450.117 580.122 990.165 05
到铁路距离0.020 4110.041 2110.026 7110.031 311
到城镇距离0.079 270.123 060.141 960.142 36
到水系距离0.076 180.106 290.136 370.121 87
土壤类型0.122 940.151 250.192 340.253 42
高程0.208 610.293 910.419 610.392 31
坡度0.105 460.177 130.273 720.233 33
坡向0.001 9120.001 3120.005 4120.003 812
Table 3  Influence degree of social and natural factors on farmland conversion
1 Zhao Ruifeng, Wang Fuhong, Zhang Lihua, et al. Dynamic of farmland landscape and its socioeconomic driving forces in the middle reaches of the Heihe River[J]. Scientia Geographica Sinica,2017,37(6):920-928.
1 赵锐锋, 王福红, 张丽华, 等. 黑河中游地区耕地景观演变及社会经济驱动力分析[J]. 地理科学,2017, 37(6): 920-928.
2 Huang Z, Du X, Castillo C S Z. How does urbanization affect farmland protection? evidence from China[J]. Resources, Conservation and Recycling, 2019, 145: 139-147.
3 Ren Xiaoyan, He Yanfen, Wang Zongming. Spatial-temporal characteristics of construction land expansion and occupation of cultivated land in urban agglomeration of central and Southern Liaoning Province based on remote sensing[J]. Remote Sensing for Land and Resources, 2020, 32(3): 98-105.
3 任晓燕, 何艳芬, 王宗明. 基于遥感的辽中南城市群建设用地扩张及其占用耕地的时空特征[J].国土资源遥感,2020,32(3):98-105.
4 Mu Yuxuan, Wu Mingquan, Niu Zheng, et al. Method of remote sensing extraction of cultivated land area under complex conditions in Southern Region[J]. Remote Sensing Technology and Application, 2020, 35(5):1127-1135.
4 牟昱璇, 邬明权, 牛铮, 等. 南方地区复杂条件下的耕地面积遥感提取方法[J]. 遥感技术与应用, 2020, 35(5): 1127-1135.
5 Xu Y, Yu L, Cai Z, et al. Exploring intra-annual variation in cropland classification accuracy using monthly, seasonal, and yearly sample set[J]. International Journal of Remote Sensing, 2019, 40(23): 8748-8763.
6 Zhu Jinxia, Xu Baogen. Evaluation of cultivated land quality under changed cultivated land use pattern based on change vector analysis[J]. Transactions of the Chinese Society of Agricultural Engineering,2020,36(2):292-300.
6 祝锦霞, 徐保根. 基于变化向量的耕地利用方式变化下耕地质量评价[J]. 农业工程学报,2020,36(2):292-300.
7 Han Zongwei, Lu Debin, Yang Jian, et al. Analysis on the distribution and variation trend of cultivated land quality in Guizhou Province[J]. Research of Soil and Water Conservation, 2017, 24(6): 154-159.
7 韩宗伟, 卢德彬, 杨建, 等. 贵州省耕地质量时空格局及变化趋势分析[J]. 水土保持研究,2017, 24(6): 154-159.
8 Han Yi, Guo Xi, Jiang Yefan, et al. Cultivated land landscape ecological security: Influencing factors and spatial differences in the hilly region of South China[J]. Acta Ecologica Sinica, 2019, 39(17): 6522-6533.
8 韩逸, 郭熙, 江叶枫, 等. 南方丘陵区耕地景观生态安全影响因素及其空间差异[J]. 生态学报, 2019, 39(17): 6522-6533.
9 Li Dan, Tian Peipei, Luo Hongying, et al. Spation-temporal characteristics and obstacle diagnosis of cultivated land ecological security in “One River and Two Tributaries” Region in Tibet[J]. Transactions of The Chinese Society of Agricultural Machinery, 2020, 51(10): 213-222.
9 李丹, 田沛佩, 罗红英, 等. 西藏“一江两河”耕地生态安全时空格局与障碍诊断[J]. 农业机械学报, 2020, 51(10): 213-222.
10 Liu Chao, Huo Yongwei, Xu Yueqing, et al. Changes in cultivated land and influencing factors before and after the implementation of grain for green project in Zhangjiakou City[J]. Journal of Natural Resources, 2018, 33(10): 1806-1820.
10 刘超, 霍永伟, 许月卿, 等. 生态退耕前后张家口市耕地变化及影响因素识别[J]. 自然资源学报, 2018, 33(10): 1806-1820.
11 Wang Mengmeng, Li Yangbing, Li Shanshan. The transition of karst valley area farmland and its dynamic mechanism[J]. Journal of Natural Resources, 2019, 34(3): 510-525.
11 王萌萌, 李阳兵, 李珊珊. 岩溶槽谷区耕地涨落时空特征与驱动机制[J]. 自然资源学报, 2019, 34(3): 510-525.
12 Wang Quanxi, Song Ge. Changes of cultivated land pattern and its spatial driving factors in the typical regions of lower Liaohe Plain[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(24): 275-283.
12 王全喜, 宋戈. 下辽河平原典型区耕地格局变化及其空间要素驱动[J]. 农业工程学报, 2021,37(24): 275-283.
13 Wang Quanxi, Sun Pengju, Liu Xuelu, et al. Prediction of cultivated land area and importance of influencing factors based on random forest algorithm[J]. Bulletin of Soil and Water Conservation, 2018, 38(5): 341-346.
13 王全喜, 孙鹏举, 刘学录, 等. 基于随机森林算法的耕地面积预测及影响因素重要性分析——以甘肃省庆阳市为例[J]. 水土保持通报, 2018, 38(5): 341-346.
14 Su Min, Wei Chaofu, Zhang Guodong, et al. Simulation of land use spatial pattern in the hilly and mountainous area under the constraints of planning scenarios[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2020, 41(7): 120-133.
14 苏敏, 魏朝富, 张国栋, 等. 规划情景约束下山地丘陵区土地利用空间格局模拟——以重庆市綦江区为例[J]. 中国农业资源与区划, 2020, 41(7): 120-133.
15 Yuan Chengcheng, Zhang Dingxiang, Liu Liming, et al. Regional characteristics and spatial-temporal distribution of cultivated land change in China during 2009—2018[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(1): 267-278.
15 袁承程, 张定祥, 刘黎明, 等. 近10年中国耕地变化的区域特征及演变态势[J]. 农业工程学报, 2021, 37(1): 267-278.
16 Wang Minglei, Shi Wenjiao. Spatial-temporal changes of newly cultivated land in Northern China and its zoning based on driving factors[J]. Scientia Agricultura Sinica, 2020, 53(12): 2435-2449.
16 王鸣雷, 史文娇. 中国北方新增耕地的时空变化及驱动因素分区[J]. 中国农业科学, 2020, 53(12): 2435-2449.
17 Zhang Pu, Guan Wenke, Liu Hongxia, et al. Characteristics analysis on spatial-temporal changes of farmland in Luntai artificial oasis in dina River watershed of Xinjiang[J]. Transactions of The Chinese Society of Agricultural Machinery, 2019, 50(5): 291-299.
17 张谱, 管文轲, 刘洪霞, 等. 新疆迪那河流域轮台人工绿洲耕地时空变化特征分析[J]. 农业机械学报, 2019,50(5): 291-299.
18 Qu Shengqiu, Liu Yanfang, Yin Chaohui, et al. Spatial pattern of cultivated land change in Fujian Province from 1990 to 2015[J]. Chinese Journal of Eco-Agriculture, 2020, 28(4): 587-598.
18 曲胜秋, 刘艳芳, 银超慧, 等. 1990—2015年福建省耕地变化的空间格局分析[J]. 中国生态农业学报(中英文), 2020, 28(4): 587-598.
19 Hou Wan, Hou Xiyong. Consistency of the multiple remote sensing-based land use and land cover classification products in the global coastal zones[J]. Journal of Geo-information Science, 2019, 21(7): 1061-1073.
19 侯婉, 侯西勇. 全球海岸带多源土地利用/覆盖遥感分类产品一致性分析[J]. 地球信息科学学报, 2019, 21(7): 1061-1073.
20 Li Dan, Zhou Jia, Zhan Daqing. Spatial and temporal changes and driving factors of cultivated land in Heilongjiang Province[J]. Scientia Geographica Sinica, 2021, 41(7): 1266-1275.
20 李丹, 周嘉, 战大庆. 黑龙江省耕地时空变化及驱动因素分析[J]. 地理科学, 2021, 41(7):1266-1275.
21 Dai Renli, Zhong Jiusheng, Jiang Li, et al. Research on the distribution characteristics and driving factors of cultivated land in Tongren City based on geographic detector[J]. Science Technology and Engineering, 2021, 21(28): 12072-12079.
21 代仁丽, 钟九生, 江丽, 等. 基于地理探测器的铜仁市耕地分布特征及驱动因子探究[J]. 科学技术与工程, 2021, 21(28):12072-12079.
22 Ye Suqian. Analysis of land use changes and quantitative evaluation of ecological security: A case study in Fuzhou[D]. Nanchang: East China Institute of Technology, 2015.
22 叶素倩.福州市土地利用变化分析及其生态安全定量评价研究[D]. 南昌: 东华理工大学, 2015.
23 Liu C, Li W, Zhu G, et al. Land use/land cover changes and their criving factors in the Northeastern Tibetan Plateau based on geographical detectors and Google Earth Engine: A case study in Gannan Prefecture[J]. Remote Sensing, 2020, 12(19): 3139. DOI: .
doi: 10.3390/rs12193139
24 Chai Xurong, Li Ming, Zhou Yi,et al.Rapid land cover classifi-cation using landsat time series based on the Google Earth Engine[J]. Remote Sensing Technology and Application, 2020, 35(2):315-325.
24 柴旭荣, 李明, 周义, 等. 影像的土地覆被快速分类[J]. 遥感技术与应用, 2020, 35(2): 315-325.
25 Hao Binfei, Han Xujun, Ma Mingguo, et al. Research progress on the application of Google Earth Engine in geoscience and environmental sciences[J]. Remote Sensing Technology and Application,2018,33(4): 600-611.
25 郝斌飞, 韩旭军, 马明国, 等. Google Earth Engine在地球科学与环境科学中的应用研究进展[J]. 遥感技术与应用,2018,33(4):600-611.
26 Yu Lili, Sun Lishuang, Zhang Danhua, et al. Extraction of land-cover and wetland area in Bohai Rim region based on Google Earth Engine[J]. Chinese Journal of Applied Ecology, 2020, 31(12): 4091-4098.
26 于莉莉, 孙立双, 张丹华, 等. 基于Google Earth Engine的环渤海地区土地覆盖分类[J]. 应用生态学报, 2020, 31(12): 4091-4098.
27 Wang Wenxu, Cao Yigui, Su Ruiqing, et al. Driving forces of cultivated land change in China: Driving factors and driving mechanism[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2020, 41(7): 21-30.
27 王文旭, 曹银贵, 苏锐清, 等. 我国耕地变化驱动力研究进展:驱动因子与驱动机理[J]. 中国农业资源与区划, 2020, 41(7): 21-30.
28 Xie S, Liu L, Zhang X, et al. Automatic land-cover mapping using landsat time-series data based on Google Earth Engine[J]. Remote Sensing, 2019, 11(24): 3023. DOI: .
doi: 10.3390/rs11243023
29 Zeng H, Wu B, Wang S, et al. A Synthesizing land-cover classification method based on Google Earth Engine: A case study in Nzhelele and Levhuvu Catchments, South Africa[J]. Chinese Geographical Science, 2020, 30(3): 397-409.
30 Wang Dejun, Jiang Qigang, Li Yuanhua, et al. Land Use classification of farming areas based on time series Sentinel-2A/B data and random forest algorithm[J]. Remote Sensing for Land and Resources, 2020,32(4): 236-243.
30 王德军, 姜琦刚, 李远华, 等. 基于Sentinel-2A/B时序数据与随机森林算法的农耕区土地利用分类[J]. 国土资源遥感, 2020, 32(4): 236-243.
31 Wang Lijuan, Kong Yuru, Yang Xiaodong, et al. Classification of land use in farming areas based on feature optimization random forest algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020,36(4): 244-250.
31 王李娟, 孔钰如, 杨小冬, 等. 基于特征优选随机森林算法的农耕区土地利用分类[J]. 农业工程学报,2020,36(4): 244-250.
32 Pelletier C, Valero S, Inglada J, et al. Effect of training class label noise on classification performances for land cover mapping with satellite image time series[J]. Remote Sensing, 2017, 9(2): 173. DOI: .
doi: 10.3390/rs9020173
33 Kong Xianglun, Li Yunlong, Han Mei, et al. Distribution of natural wetlands in the Yellow River Delta for Three Periods since 1990 and driving factors of their changes[J]. Wetland Science, 2020, 18(5): 603-612.
33 孔祥伦, 李云龙, 韩美, 等. 1990年以来3个时期黄河三角洲天然湿地的分布及其变化的驱动因素研究[J]. 湿地科学, 2020, 18(5): 603-612.
34 Wang Jinfeng, Xu Chengdong. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1):116-134.
34 王劲峰, 徐成东. 地理探测器:原理与展望[J]. 地理学报, 2017, 72(1): 116-134.
35 Song Y, Wang J, Ge Y, et al. An Optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data[J]. GIS Science and Remote Sensing, 2020, 57(5): 593-610.
36 Wu Peizhong. Study on the relationship between urban expansion and cultivated land use change in Fuzhou[D]. Fuzhou: Fujian Normal University, 2012.
36 吴培中.福州城市扩展与耕地变化研究[D]. 福州: 福建师范大学, 2012.
37 Liang Xingyuan, Li Yangbing. Spatio-temporal variation of farmland-fruit forest conversion and its enlightenment in Three Gorges Reservoir area: A case study on Caotangxi Watershed[J]. Journal of Natural Resources, 2019, 34(2): 385-399.
37 梁鑫源, 李阳兵. 三峡库区“耕—果”转换时空变化特征及其启示——以草堂溪流域为例[J]. 自然资源学报, 2019, 34(2): 385-399.
38 Zhang Ting, Luo Xi, Cai Haisheng. Dynamic change and driving factors of cultivated land in Jiangxi Province[J]. Bulletin of Soil and Water Conservation, 2014, 34(3): 305-310.
38 张婷, 骆希, 蔡海生. 江西省耕地的动态变化及驱动因子[J]. 水土保持通报, 2014, 34(3): 305-310.
39 Liu Ying, Zhou Baotong, Yu Xiaofeng, et al. The quantitative study on the using efficiency and driving factors of changing of cultivated area in Sichuan since the beginning of 21 Century[J]. Journal of Sichuan Agricultural University, 2015, 33(2): 237-244.
39 刘颖, 周宝同, 于晓凤, 等. 21世纪以来四川省耕地变化驱动因素及耕地利用效率定量研究[J]. 四川农业大学学报, 2015, 33(2): 237-244.
40 Zhu Chuang. Spatial-temporal characteristics and driving factors of cultivated land change in China from 2001 to 2017[D]. Tianjin: Tiangong University, 2020.朱闯.2001~2017年中国耕地时空变化特征及其驱动因素研究[D]. 天津: 天津工业大学, 2020.
No Suggested Reading articles found!