Please wait a minute...


Remote Sensing Technology and Application  2022, Vol. 37 Issue (3): 620-628    DOI: 10.11873/j.issn.1004-0323.2022.3.0620
Irrigation Area Monitoring in Jiefangzha Irrigation District based on Landsat 8 Satellite Data
Enyu Du1,2,3(),Fang Chen1,2,3,4(),Huicong Jia1,2,Lei Wang1,2,Aqiang Yang1,2
1.Key Laboratory of Digital Earth Science,Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100094,China
2.International Research Center of Big Data for Sustainable Development Goals,Beijing 100094,China
3.University of Chinese Academy of Sciences,Beijing 100049,China
4.Hainan Key Laboratory of Earth Observation,Aerospace Information Research Institute,Chinese Academy of Sciences,Sanya 572029,China
Download:  HTML  PDF (3508KB) 
Export:  BibTeX | EndNote (RIS)      

The monitoring of information such as irrigation area and drought conditions in irrigation districts is the basis of irrigation districts management, while the traditional way to get the information cannot meet the research needs. Satellite remote sensing is a powerful technical means for water resources management. Taking the Jiefangzha Irrigation district in Inner Mongolia Autonomous Region as a research area, the Landsat 8 satellite data were selected to calculate and analyze the distribution and change of the Temperature Vegetation Dryness Index(TVDI) and the Modified Perpendicular Drought Index(MPDI). The paper built a remote sensing model of irrigation area based on drought index difference threshold to determine the threshold and extract the irrigation area. The results showed that the Jiefangzha Irrigation district received a large scale of irrigation in July to August in 2017. Through comparing the irrigation area extracted by using two drought index difference thresholds with the real irrigation area, the monitoring accuracy of TVDI and MPDI is 82.96% and 74.01%, respectively. And the high-resolution data of Google Earth is selected as the real data to calculate the confusion matrix. The results showed that the overall accuracy of MPDI extraction is 94.17%, which is higher than 58.90% of TVDI. The two results illustrate the feasibility of calculating drought index for irrigation drought monitoring and area extraction. However, in terms of spatial distribution, compared with TVDI, MPDI can better reflect the drought situation, and the spatial distribution of the irrigation district is more reasonable.

Key words:  TVDI      MPDI      Irrigation area      Difference threshold      Confusion matrix     
Received:  14 January 2021      Published:  25 August 2022
ZTFLH:  TP79  
Corresponding Authors:  Fang Chen     E-mail:;
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
Articles by authors
Enyu Du
Fang Chen
Huicong Jia
Lei Wang
Aqiang Yang

Cite this article: 

Enyu Du,Fang Chen,Huicong Jia,Lei Wang,Aqiang Yang. Irrigation Area Monitoring in Jiefangzha Irrigation District based on Landsat 8 Satellite Data. Remote Sensing Technology and Application, 2022, 37(3): 620-628.

URL:     OR

Fig.1  Landsat 8 image of Jiefangzha Irrigation district
Table 1  Landsat 8 data
Fig.2  Schematic diagram of PDI
Fig.3  Experimental flow chart
Fig.4  Dry-edge and wet-edge fitting of NDVI-LST spatial pattern
Fig.5  Mean of TVDI and MPDI
Fig.6  The extraction results of the irrigation area
阈值I真实灌溉面积 /km2监测灌溉面积 /km2监测准确率 /%
ITVDI1 2401 028.6682.96
IMPDI1 240917.7574.01
Table 2  Comparison of monitoring irrigation area and real irrigation area from July 4 to September 6
Fig.7  Google Earth Image
总体精度 /%用户精度 /%制图精度 /%误分率 /%错分率 /%漏分率 /%
Table 3  The monitoring accuracy of irrigation area
1 Guan X, Zang Y, Meng Y, et al. Study on spatiotemporal distribution characteristics of flood and drought disaster impacts on agriculture in China[J]. International Journal of Disaster Risk Reduction, 2021, 64: 102504. DOI: .
doi: 10.1016/j.ijdrr.2021.102504
2 Zhao R, Wang H, Hu S, et al. Joint probability of drought encounter among three major grain production zones of China under nonstationary climate[J]. Journal of Hydrology, 2021, 603: 126995. DOI: .
doi: 10.1016/j.jhydrol.2021.126995
3 Han L, Zhang Q, Zhang Z, et al. Drought area, intensity and frequency changes in China under climate warming, 1961–2014[J]. Journal of Arid Environments, 2021, 193: 104596. DOI: .
doi: 10.1016/j.jaridenv.2021.104596
4 Qin Zhihao, Tang Huajun, Li Wenjuan. Front issues in studying the impacts of climate change on grain farming system in China[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2015, 36(1):1-8.
4 覃志豪,唐华俊,李文娟 .气候变化对我国粮食生产系统影响的研究前沿[J].中国农业资源与区划,2015,36(1):1-8.
5 Tuya Wulan, Yu Lifeng, Wu Lan. Drought analysis of HeTao irrigation district based on Landsat8 TVDI—Taking Linhe district as an example[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2017, 38(5):123-127.
5 乌兰吐雅,于利峰,乌兰 等.基于Landsat8 TVDI的河套灌区旱情分析——以临河区为例[J]. 中国农业资源与区划,2017,38(5):123-127.
6 Xiong L, Xu X, Engel B, et al. Modeling agro-hydrological processes and analyzing water use in a super-large irrigation district (Hetao) of arid upper Yellow River basin[J]. Journal of Hydrology,2021,603:127014. DOI: .
doi: 10.1016/j.jhydrol. 2021.127014
7 Qu Zhongyi, Yang Xiao, Huang Yongjiang. Analysis and assessment of water-saving project of Hetao Irrigation district in Inner Mongolia[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(4):70-76,112.
7 屈忠义,杨晓,黄永江.内蒙古河套灌区节水工程改造效果分析与评估[J].农业机械学报,2015,46(4):70-76,112.
8 Liu Haiqi, Wang Yingchun. The comprehensively analysis of development potential in husbandry and supporting capacity of water resources in Northwest of China[J].Chinese Journal of Agricultural Resources and Regional Planning,2015,36(3):1-9.
8 刘海启,王迎春.我国西北旱区农牧业综合开发潜力分析及水资源支撑能力研究[J].中国农业资源与区划,2015,36(3):1-9.
9 Zhang C, Dong J, Zuo L, et al. Tracking spatiotemporal dynamics of irrigated croplands in China from 2000 to 2019 through the synergy of remote sensing, statistics, and historical irrigation datasets[J]. Agricultural Water Management, 2022, 263: 107458. DOI: .
doi: 10.1016/j.agwat.2022.107458
10 Shao Qiufang, Ma Zelong, Jing Qin. Application of remote sensing technology in irrigation system information[J]. Techenical Supervision in Water Resources,2018(4):52-53,82.
10 邵秋芳,麻泽龙,敬琴. 遥感技术在灌区信息化中的应用[J].水利技术监督,2018(4):52-53,82.
11 Han Zhe. Research on management system reform of rural small water infrastructures[D]. Changsha: Hunan University,2011.
11 韩哲.小型农村水利工程管理体制改革研究[D].长沙:湖南大学,2011.
12 Sandholt I, Rasmussen K, Andersen J. A simple interpretation of the surface temperature/vegetation condition index space for assessment of surface moisture status[J]. Remote Sensing of Environment, 2002, 78(2):213-224. DOI: .
doi: 10.1016/S0034-4257(01)00274-7
13 Ghulam Abduwasit, Qin, Qiming, Zhiming. Modified perpendicular drought index: A real-time drought monitoring method[J].ISPRS Journal of Photogrammetry and Remote Sensing,2007,62:150-164. DOI: .
doi: 10.1016/j.isprsjprs. 2007. 03.002
14 Wei W, Zhang J, Zhou L, et al. Comparative evaluation of drought indices for monitoring drought based on remote sensing data[J]. Environmental Science and Pollution Research, 2021,28(16):20408-20425. DOI: .
doi: 10.1007/s11356-020-12120-0
15 Javed T, Li Y, Rashid S, et al. Performance and relationship of four different agricultural drought indices for drought monitoring in China's mainland using remote sensing data[J]. Science of the Total Environment, 2021, 759: 143530. DOI: .
doi: 10.1016/j.scitotenv.2020.143530
16 Shen Jing. The application research of remote sense technology in the monitor of irrigation area[D]. Dalian: Dalian University of Technology,2012.
16 沈静.遥感技术在灌溉面积监测上的应用研究[D].大连:大连理工大学,2012.
17 Yi Zhenyan, Zhao Hongli, Jiang Yunzhong, et al. Application and research of remote sensing in irrigation management of Hetao District[J]. South-to-North Water Transfers and Water Science and Technology,2014,12(5):166-169.
17 易珍言,赵红莉,蒋云钟,等.遥感技术在河套灌区灌溉管理中的应用研究[J].南水北调与水利科技,2014,12(5):166-169.
18 Zhang Hongwei, Chen Huailiang, Liu Zhongyang, et al. The review of drought index in advance[C]∥ Proceedings of 2010 International Conference on Romote Sensing(ICRS 2010) Volume 3. Institute of Electrical and Electronics Engineers,2010:556-561.
18 张红卫,陈怀亮,刘忠阳,等.最新干旱指数综述[C]∥ 2010年国际遥感会议论文集第3卷,电气与电子工程师协会,2010:556-561.
19 Yu B, Chen F, Xu C. Landslide detection based on contour-based deep learning framework in case of national scale of Nepal in 2015[J]. Computers & Geosciences, 2020, 135: 104388. DOI: .
doi: 10.1016/j.cageo.2019.104388
20 Bai Liangliang, Cai Jiabing, Liu Yu, et al. Temporal and spatial variation of the evapotranspiration and the evaluation on irrigation efficiency in Jiefangzha irrigation region[J]. China Rural Water and Hydropower, 2016(9):68-72.
20 白亮亮,蔡甲冰,刘钰 等.解放闸灌域农田耗水时空变化特征及灌溉效率评价[J].中国农村水利水电, 2016(9):68-72.
21 Chi Weiwei. Water use performance for irrigation area based on distributed hydrological model[D].Beijing: China Institute of Water Resources and Hydropower Research,2013.
21 茌伟伟.基于分布式水文模型的灌区用水效率评价[D].北京:中国水利水电科学研究院,2013.
22 Wang N, Chen F, Yu B, et al. Segmentation of large-scale remotely sensed images on a Spark platform: A strategy for handling massive image tiles with the MapReduce model[J]. ISPRS journal of photogrammetry and remote sensing, 2020, 162: 137-147. DOI: .
doi: 10.1016/j.isprsjprs.2020.02.012
23 Yu B, Yang L, Chen F. Semantic segmentation for high spatial resolution remote sensing images based on convolution neural network and pyramid pooling module[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2018,11(9):3252-3261. DOI: .
doi: 10.1109/JSTARS. 2018.2860989
24 Jiang Y, Lin W. A comparative analysis of retrieval algorithms of land surface temperature from Landsat-8 data: A case study of Shanghai, China[J]. International Journal of Environmental Research and Public Health,2021,18(11): 5659. DOI: .
doi: 10.3390/ijerph18115659
25 Wu Zhigang, Jiang Tao, Fan Yanlei, et al. Land surface temperature retrieval and result analysis based on Landsat 8 data in Wuhan City[J]. Chinese Journal of Engineering Geophysics,2016,13(1):135-142.
25 吴志刚,江滔,樊艳磊 等.基于Landsat 8数据的地表温度反演及分析研究:以武汉市为例[J].工程地球物理学报,2016, 13(1):135-142.
26 Li Zhe, Tan Debao. The second modified perpendicular drought index:a combined drought monitoring method with soil moisture and vegetation index[J]. Journal of the Indian Society of Remote Sensing, 2013, 41(4):873-881. DOI: .
doi: 10.1007/s12524-013-0264-5
27 Xu Xiru. Remote sensing of physics[M].Beijing:Peking University Press,2005:26-120.
27 徐希孺.遥感物理[M].北京:北京大学出版社,2005:26-120.
28 Zhao Yingshi.Principles and methods of remote sensing applica-tion analysis[D].Beijing: Science Press,2003:36-39.
28 赵英时.遥感应用分析原理和方法.北京:科学出版社,2003:36-39.
No Suggested Reading articles found!