1 |
Liu Liangyun. Principles and applications of vegetation quantitative remote sensing[M]. Beijing: Science Press,2014.
|
1 |
刘良云.植被定量遥感原理与应用[M].北京:科学出版社.2014.
|
2 |
Zhang Yongjiang, Liu Liangyun, Wang Jihua, et al. Detection of fluorescence in reflection spectrum of blade by high spectrometer[J]. Optical Technology, 2007, 33(1):119-121.
|
2 |
张永江,刘良云,王纪华, 等. 应用高光谱仪探测叶片反射光谱中的荧光[J]. 光学技术, 2007,33(1): 119-121.
|
3 |
Zhang Yongjiang, Zhao Chunjiang, Liu Liangyun,et al. Preli-minary study on passive pluorescence detection of water stress on maize leaves[J]. Transactions of the Chinese Society of Agricultural Engineering,2006,22(9):39-43.
|
3 |
张永江,赵春江,刘良云,等. 被动荧光探测水分胁迫对玉米叶片影响的初步研究[J], 农业工程学报,2006,22(9):39-43.
|
4 |
Zarco-Tejada P J, Berni J A, Suárez L, et al. Imaging Chlorophyll fluorescence with an airborne narrow-band multispectral camera for vegetation stress cetection[J]. Remote Sensing of Environment, 2009, 113(6): 1262-1275.
|
5 |
Lee J E, Frankenberg C, van der Tol C, et al. Forest productivity and water stress in Amazonia: Observations from GOSAT chlorophyll rluorescence[J]. Proceedings of the Royal Society B: Biological Sciences,2013,280(1761): DOI: 10.1098/rspb.2013.0171.
|
6 |
Zhang Y, Guanter L, Berry J A, et al. Estimation of vegetation photosynthetic capacity from space‐based measurements of chlorophyll fluorescence for terrestrial biosphere models[J]. Global Change Biology, 2014, 20(12): 3727-3742.
|
7 |
Du S, Liu L, Liu X, et al. First investigation of the relationship between solar-induced chlorophyll fluorescence observed by TanSat and gross primary productivity[J]. IEEE Journal of selected topics in Applied Earth Observations and Remote Sensing,2021,14:11892-11902. DOI: .
doi: 10.1109/JSTARS. 2021.3128355
|
8 |
Gao H, Liu S, Lu W, et al. Global analysis of the relationship between reconstructed solar-induced Chlorophyll Fluorescence (SIF) and Gross Primary Production (GPP)[J]. Remote Sensing,2021,13(14):2824. DOI: .
doi: 10.3390/rs13142824
|
9 |
Jovanić B, Radenković B, Despotović-Zrakić M, et al. Effect of UV-B radiation on chlorophyll fluorescence, photosynthetic activity and relative chlorophyll content of five different corn hybrids[J]. Journal of Photochemistry and Photobiology,2022:100115. DOI: .
doi: 10.1016/j.jpap.2022. 100115
|
10 |
Cao J, An Q, Zhang X, et al. Is satellite sun-induced chlorophyll fluorescence more indicative than vegetation indices under drought condition?[J]. Science of The Total Environment,2021,792:148396. DOI: .
doi: 10.1016/j.scitotenv.2021. 148396
|
11 |
Detmers R, Hasekamp O, Aben I, et al. Anomalous carbon uptake in Australia as seen by GOSAT[J]. Geophysical Research Letters, 2015, 42(19): 8177-8184.
|
12 |
Green J K, Konings A G, Alemohammad S H, et al. Regionally strong feedbacks between the atmosphere and terrestrial biosphere[J]. Nature Geoscience, 2017, 10(6): 410-414.
|
13 |
Li X, Xiao J. Global climatic controls on interannual variability of ecosystem productivity: Similarities and differences inferred from solar-induced chlorophyll fluorescence and enhanced vegetation index[J]. Agricultural and Forest Meteorology, 2020(288): DOI:10.1016/j.agrformet.108018.
|
14 |
Bertani G, Wagner F H, Anderson L O, et al. Chlorophyll fluorescence data reveals climate-related photosynthesis seasonality in Amazonian forests[J]. Remote Sensing,2017,9(12): DOI:10.3390/rs1275.
|
15 |
Chen X, Mo X, Zhang Y, et al. Drought detection and assessment with solar-induced chlorophyll fluorescence in summer maize growth period over North China Plain[J]. Ecological Indicators, 2019, 104: 347-356.
|
16 |
Chen C, Park T, Wang X, et al. China and India lead in greening of the world through land-use management[J]. Nature Sustainability, 2019, 2(2): 122-129.
|
17 |
Wu Zhengyi. China vegetation[M]. Beijing: Science Press, 1980.
|
17 |
吴征镒. 中国植被[M].北京:科学出版社,1980.
|
18 |
Hu J, Liu L, Guo J, et al. Upscaling solar-induced chlorophyll fluorescence from an instantaneous to daily scale gives an improved estimation of the gross primary productivity[J], Remote Sensing, 2018, 10(10): DOI:10.3390/rs10101663.
|
19 |
Joiner J, Guanter L, Lindstrot R, et al. Global monitoring of terrestrial chlorophyll fluorescence from moderate spectral resolution near-infrared satellite measurements: Methodology, simulations, and application to GOME-2[J]. Atmospheric Measurement Techniques, 2013, 6(2): 2803-2823.
|
20 |
Dong J, Naibin W, Xiaohuan Y,et al. Dynamic properties of absorbed photosynthetic active eadiation and its relation to crop yield[J]. System Sciemces and Comprehensive Studies In Agriculture, 2002,18(1):51-54.
|
21 |
Sellers P J, Tucker C J, Collatz G J,et al. A global 1 by 1 NDVI data set for climate studies. Part 2: The generation of global fields of terrestrial biophysical parameters from the NDVI[J]. International Journal of Remote Sensing, 1994, 15 (17): 3519-3545.
|
22 |
Liu L, Guan L, Liu X. Directly estimating diurnal changes in GPP for C3 and C4 crops using far-red sun-induced Chlorophyll fluorescence[J]. Agricultural and Forest Meteorology 2017, 232: 1-9.
|
23 |
Liu L. GOME-2 Monthly SIF with correction of temporal degration[DB/OL]. http://doi.org/10.5281/zenodo.4433590, 2021,2021.
|
24 |
Tang W. Daily average solar radiation dataset of 716 weather stations in China (1961~2010) [DB/OL], National Tibetan Plateau Data Center,2019,DOI: .唐文君.中国716个气象站太阳辐射日均值数据集(1961~2010)[DB/OL].国家青藏高原科学数据中心,2019,DOI: .
doi: 10.11888/AtmosphericPhysics.tpe.249399.file
|
25 |
Tang W, Yang K, Qin J,et al. Development of a 50-year daily surface solar radiation dataset over China[J]. Science China Earth Sciences,2013, 56 (9):1555-1565.
|
26 |
Tang W-J, Yang K, Qin J,et al. Solar radiation trend across China in recent decades: A revisit with quality-controlled data[J]. Atmospheric Chemistry and Physics,2011, 11 (1): 393-406.
|
27 |
Yang K, Koike T, Ye B. Improving estimation of hourly, daily, and monthly solar radiation by importing global data sets[J], Agricultural and Forest Meteorology,2006,137(1-2):43-55.
|
28 |
Cai Bofeng, Yu Rong.Research progress and evaluation of vegetation long time series trend characteristics based on remote sensing[J]. Journal of Remote Sensing, 2009,13(6): 1170-1186.蔡博峰,于嵘. 基于遥感的植被长时序趋势特征研究进展及评价[J]. 遥感学报, 2009.13(6):1170-1186.
|
29 |
Marrelec G. Krainik A, Duffau H,et al.Partial correlation for functional brain interactivity investigation in functional MRI[J]. Neuroimage,2006,32(1):228-237.
|
30 |
Zhang X, Friedl M A, Schaaf C B, et al. Climate controls on vegetation phenological patterns in northern nid- and high latitudes inferred from MODIS data[J]. Global Change Biology, 2004,10(7): 1133-1145.
|
31 |
Chapman W L, Walsh J E. Recent variations of sea ice and air temperature in high latitudes[J]. Bulletin of the American Meteorological Society, 1993, 74(1): 33-47.
|
32 |
Myneni R B, Keeling C D, Tucker C J, et al. Increased plant growth in the northern high latitudes from 1981 to 1991[J]. Nature, 1997,386(6626):698-702.
|
33 |
Kawabata A, Ichii K, Yamaguchi Y. Global monitoring of interannual changes in vegetation activities using NDVI and its relationships to temperature and precipitation[J]. International Journal of Remote Sensing, 2001, 22(7):1377-1382.
|
34 |
Park H, Jeong S, Peñuelas J. Accelerated rate of vegetation green‐up related to warming at northern high latitudes[J]. Global Change Biology, 2020, 26(11): 6190-6202.
|
35 |
Spano D, Cesaraccio C, Duce P . et al. Phenological stages of natural species and their use as climate indicators[J]. International Journal of Biometeorology, 1999, 42(3): 124-133.
|
36 |
Zhao X, Tan K, Zhao S, et al. Changing climate affects vegetation growth in the arid region of the Northwestern China[J]. Journal of Arid Environments, 2011, 75(10): 946-952.
|
37 |
Ning T, Liu W, Lin W, et al. NDVI variation and its responses to climate change on the Northern Loess Plateau of China from 1998 to 2012[J]. Advances in Meteorology, 2015, 2015(1):1-10.
|
38 |
Xu H J, Wang X P. Effects of altered precipitation regimes on plant productivity in the arid region of Northern China[J]. Ecological Informatics, 2016,31:137-146.
|
39 |
Walther S, Duveiller G, Jung M, et al. Satellite observations of the contrasting response of trees and grasses to variations in water availability[J]. Geophysical Research Letters, 2019, 46(3): 1429-1440.
|
40 |
Myneni R B, Yang W, Nemani R R, et al. Large seasonal swings in leaf area of Amazon rainforests[J]. Proceedings of the National Academy of Sciences,2007,104(12):4820-4823.
|
41 |
Matheny A M, Bohrer G, Garrity S R, et al. Observations of stem water storage in trees of opposing hydraulic strategies[J]. Ecosphere, 2015,6(9):1-13.
|
42 |
Graham E A, Mulkey S S, Kitajima K, et al. Cloud cover limits net CO2 uptake and growth of a rainforest tree during tropical rainy seasons[J]. Proceedings of the National Academy of Sciences, 2003, 100(2): 572-576.
|
43 |
Wang Qiang, Zhang Bo, Dai Shengpei, et al. Vegetation coverage changes and influencing factors in the Three North Shelterbelt project area[J]. China Environmental Science, 2012, 32(7): 1302-1308.
|
43 |
王强,张勃,戴声佩, 等. 三北防护林工程区植被覆盖变化与影响因子分析[J]. 中国环境科学, 2012, 32(7): 1302-1308.
|
44 |
Song Fuqiang, Xing Kaixiong, Liu Yang, et al. Monitoring and evaluation of vegetation dynamics in Northern Shaanxi based on MODIS/NDVI[J]. Acta Ecologica Sinica,2011,31(2):354-363.
|
44 |
宋富强,邢开雄,刘阳, 等. 基于MODIS/NDVI的陕北地区植被动态监测与评价[J]. 生态学报,2011,31(2): 354-363.
|
45 |
He Yong, Dong Wenjie, Guo Xiaoyin,et al. NPP variation characteristics of terrestrial vegetation in the eastern route of the South-to-North Water Transfer Project in My Country[J]. Climate Change Research Progress,2006,2(5):246-249.
|
45 |
何勇,董文杰,郭晓寅, 等. 我国南水北调东线地区陆地植被NPP变化特征[J]. 气候变化研究进展,2006,2(5):246-249.
|
46 |
Wang Futang.Several progress in research on the impact of climate warming in My Country in the past ten years[J]. Journal of Applied Meteorology,2002,13(6):755-766.
|
46 |
王馥棠. 近十年来我国气候变暖影响研究的若干进展[J]. 应用气象学报, 2002,13(6):755-766.
|