1 |
Suo Anning, Wang Peng, Yuan Daowei,et al. Study on monitoring and analysis of existing sea reclamation resource based on high resolution satellite remote sensing imagery:A case in south coast of Yingkou[J]. Acta Oceanologica Sinica,2016,38(9):54-63.
|
1 |
索安宁, 王鹏,袁道伟,等. 基于高空间分辨率卫星遥感影像的围填海存量资源监测与评估研究——以营口市南部海岸为例[J]. 海洋学报,2016,38(9):54-63.]
|
2 |
Gao Ning, Du Xinyuan, Xu Peng,et al. Monitoring technology and method of doubtful area in reclamation area[J]. Ocean Development and Management,2019,36(2):14-16.
|
2 |
高宁, 杜新远,许鹏,等. 围填海疑点疑区监测技术方法[J]. 海洋开发与管理,2019,36(2):14-16.]
|
3 |
Sun Jing, Zhang Ying, Qiao Qinghua,et al. Reclamation project monitoring and ecosystem service value change analysis[J]. Science of Surveying and Mapping,2020,45(12):201-208.
|
3 |
孙静,张英,乔庆华,等. 围填海工程监测及生态系统服务价值变化分析[J].测绘科学,2020,45(12):201-208.]
|
4 |
Jia Wei, Gao Xiaohong, Yang Lingyu,et al. Land cover information extraction for complicated terrain regions via an object-oriented classification method[J]. Journal of Lanzhou University(Natural Sciences Edition),2018,54(4):486-493.
|
4 |
贾伟,高小红,杨灵玉,等. 面向对象方法的复杂地形区地表覆盖信息提取[J].兰州大学学报(自然科学版),2018,54(4):486-493.]
|
5 |
Ju Mingming, Wang Min, Zhang Dong,et al. Study on the remote-sensing-based monitoring of reclamation project area by using the object-oriented image analysis technique[J]. Marine Science Bulletin,2013,32(6):678-684.
|
5 |
鞠明明,汪闽,张东,等. 基于面向对象图像分析技术的围填海用海工程遥感监测[J]. 海洋通报,2013,32(6):678-684.]
|
6 |
Zhou Tianya.Object-oriented land cover classification using high spatial resolution remote sensing[J]. Geomatics Science and Technology,2020,8(1):9-16.
|
6 |
周天涯. 面向对象的高空间分辨率遥感土地覆盖分类[J].测绘科学技术,2020,8(1): 9-16.]
|
7 |
Rao Ping, Wang Jianli, Wang Yong,et al. Extraction of information on construction land based on multi-feature decision tree classificationExtraction of information on construction land based on multi-feature decision tree classification[J]. Transactions of the Chinese Society of Agricultural Engineering,2014,30(12):233-240.
|
7 |
饶萍,王建力,王勇. 基于多特征决策树的建设用地信息提取[J]. 农业工程学报,2014,30(12):233-240.]
|
8 |
Zhang Hongmei, Wu Jiwen, Liu Xing,et al. Land use classification based on feature extraction and decision tree method[J]. Science of Surveying and Mapping, 2014,39(10):53-56.
|
8 |
张红梅,吴基文,刘星,等. 特征提取和决策树法土地利用遥感分类[J]. 测绘科学,2014,39(10):53-56.]
|
9 |
Zhang Qian. Research on land cover classification of aerial hyperspectral remote sensing based on decision tree method[D]. Ji'nan: Shandong University of Science and Technology,2015[张倩. 基于决策树方法的航空高光谱遥感土地覆盖分类研究[D]. 济南:山东科技大学,2015.]
|
10 |
Shen Zhaoqing, Huang Liang, Tao Jianbin. Hyperspectral RS image road feature extraction based on SVM[J]. Journal of Chang’an University (Natural Science Edition),2012,32(5): 34-38.
|
10 |
沈照庆,黄亮,陶建斌. 基于支持向量机的高光谱遥感影像道路提取[J]. 长安大学学报(自然科学版),2012,32(5):34-38.]
|
11 |
Yuan Yongsheng. Research on object-oriented land cover image classification method based on support vector machine classification[D].Xianyang:Northwest A&F University.
|
11 |
员永生. 基于支持向量机分类的面向对象土地覆被图像分类方法研究[D]. 咸阳:西北农林科技大学,2010.
|
12 |
Zhu Jieer. Research on support vector machine classification of hyperspectral images combined with spatial information[D]. Hangzhou: Zhejiang University.
|
12 |
朱洁尔. 结合空间信息的高光谱图像支持向量机分类研究[D]. 杭州:浙江大学,2013.
|
13 |
Le Cun, Bengio Yoshua. Convolutional networks for images, speech, and time series[J]. The Handbook of Brain Theory and Neural Networks, 1995,3361(10):255-258.
|
14 |
Cao Linlin, Li Haitao,HanYanshun, et al. Application of convolutional neural networks in classification of high resolution remote sensing imagery[J]. Science of Surveying and Mapping, 2016,41(9):170-175.
|
14 |
曹林林,李海涛,韩颜顺,等. 卷积神经网络在高分遥感影像分类中的应用[J]. 测绘科学,2016,41(9):170-175.
|
15 |
Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]∥ 2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), 2015: 3431-3440.DOI: .
doi: 10.1109/CVPR.2015.7298965
|
16 |
Ronneberger O, Fischer O, Brox T. U-Net: convolutional networks for biomedical image segmentation[J]. Medical Image Computing and Computer-Assisted Intervention, Pt Iii, 2015,9351:234-241. DOI: .
doi: 10.1007/978-3-319-24574-4_28
|
17 |
Su Jianmin, Yang Lanxin, Jing Weipeng. U-Net based semantic segmentation method for high resolution remote sensing image[J]. Computer Engineering and Applications, 2019,55(7):207-213.
|
17 |
苏健民,杨岚心,景维鹏. 基于U-Net的高分辨率遥感图像语义分割方法[J]. 计算机工程与应用,2019,55(7):207-213.]
|
18 |
Xu Huimin. Research on high resolution remote sensing image classification method based on deep learning U-Net model[D]. Chengdu: Southwest Jiaotong University.
|
18 |
许慧敏. 基于深度学习U-Net模型的高分辨率遥感影像分类方法研究[D]. 成都:西南交通大学,2018.
|
19 |
Chaurasia A, Culurciello E. LinkNet: Exploiting encoder representations for dfficient semantic segmentation[C]∥2017 IEEE Visual Communications and Image Processing (VCIP),2017. DOI: .
doi: 10.1109/ VCIP.2017.8305148
|
20 |
Li L, Wang C, Zhang H, et al. Residual unet for urban building change detection with Sentinel-1 SAR data[J]. 2019 IEEE International Geoscience and Remote Sensing Symposium(IGARSS 2019),2019:1498-1501. DOI: .
doi: 10.1109/IGARSS. 2019.8898146
|
21 |
Sergey I, Christian S. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]∥ International Conference on Machine Learning. PMLR, 2015: 448-456. DOI: .
doi: 10.5555/3045118.3045167
|
22 |
Wu G M, Shao X W, Guo Z L, et al. Automatic building segmentation of aerial imagery using multi-constraint fully convolutional networks[J]. Remote Sensing,2018,10:407. DOI: .
doi: 10. 3390/rs10030407
|
23 |
Chen L C, Papandreou G, Kokkinos I,et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2018,40(4):834-848. DOI: .
doi: 10.1109/TPAMI.2017.2699184
|
24 |
Bittner K, Cui S, Reinartz P. Building extraction from remote sensing data using fully convolutional networks[J]. ISPRS Hannover Workshop: Hrigi 17-Cmrt 17-Isa 17-Eurocow 17, 2017,42-1(W1):481-486. DOI: .
doi: 10.5194/isprs-archives-XLII-1-W1-481-2017
|
25 |
Mark Everingham, Gool Luc Van, Williams Christopher K I, et al. The pascal Visual Object Classes (VOC) challenge[J]. 2010,8(2):303-338. DOI: .
doi: 10.1007/s11263-009-0275-4
|
26 |
Polak M, Zhang H, Pi M H. An evaluation metric for image segmentation of multiple objects[J]. Image and Vision Computing, 2009,27(8):1223-1227. DOI: .
doi: 10.1016/j.imavis. 2008.09.008
|
27 |
Carletta J. Assessing agreement on classification tasks: The Kappa statistic[J].Computational Linguistics,1996,22(2): 249-254. DOI: .
doi: 10.5555/230386.230390
|