Please wait a minute...
img

Wechat

Remote Sensing Technology and Application  2022, Vol. 37 Issue (4): 789-799    DOI: 10.11873/j.issn.1004-0323.2022.4.0789
    
Reclamation Detection and Recognition of High Resolution Satellite Remote Sensing Image based on Deep Learning
Fengshi Yu1(),Yi Sui1(),Changying Wang1,Jialan Chu2
1.School of Computer Science and Technology,Qingdao University,Qingdao 266071,China
2.School of Data Science and Software Engineering,Qingdao University,Qingdao 266071,China
Download:  HTML  PDF (6175KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Based on high-resolution satellite remote sensing images, automatic and accurate extraction of land use status of reclamation is an important technical means to realize the intensive use of reclamation. In view of the complex features of high-resolution satellite remote sensing images, the traditional method of manually extracting features is difficult to meet the actual needs of business departments. A framework of reclamation detection and recognition based on deep learning is proposed. The framework uses the multi constrained variant structure of U-Net network, and to solve the problem of inconsistent classification caused by complex features of high-resolution remote sensing images, full connection conditional random field and image corrosion operation are introduced to post-processing the segmentation results. The high-resolution satellite remote sensing images of Tianjin Binhai New Area in 2016 and 2020 were used as data sources to verify. The experimental results show that the overall accuracy rate, F1 score, kappa coefficient and mIoU of reclamation are 96.73%, 92.87%, 90.28% and 86.82% respectively. On this basis, the dynamic change characteristics of land use in the reclamation area are analyzed and extracted, which provides effective technical support for the intensive use and management of reclamation.

Key words:  Reclamation      Deep learning      Detection and identification      U-Net     
Received:  31 August 2020      Published:  28 September 2022
P756.8  
Corresponding Authors:  Yi Sui     E-mail:  2019020589@qdu.edu.cn;suiyi@qdu.edu.cn
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Fengshi Yu
Yi Sui
Changying Wang
Jialan Chu

Cite this article: 

Fengshi Yu,Yi Sui,Changying Wang,Jialan Chu. Reclamation Detection and Recognition of High Resolution Satellite Remote Sensing Image based on Deep Learning. Remote Sensing Technology and Application, 2022, 37(4): 789-799.

URL: 

http://www.rsta.ac.cn/EN/10.11873/j.issn.1004-0323.2022.4.0789     OR     http://www.rsta.ac.cn/EN/Y2022/V37/I4/789

Fig.1  Classic U-Net network structure16
Fig.2  Multi constrained variant U-Net (MCFCN) network architecture
Fig.3  Fully connected condition random field processing flow
Fig.4  Comparison of post-processing results
Fig.5  Flow chart of reclamation land detection
Fig.6  The division of research area, test set and training set area
模型αβγδ
MCFCN10.50.500
MCFCN20.500.50
MCFCN30.5000.5
MCFCN40.250.250.250.25
MCFCN51000
Table 1  Selection of constraint parameters in loss function
模型总体分类精度F1-scoreKappamIoU
MCFCN10.9720.9440.9240.895
MCFCN20.9730.9450.9260.897
MCFCN30.9720.9420.9230.892
MCFCN40.9730.9430.9240.893
MCFCN50.9710.9400.9200.889
Table 2  Performance comparison of models on validation set under different parameters
时间模型总体分类精度F1-scoreKappamIoU
2016年SVM0.913 60.723 60.657 90.605 0
FCN8s0.928 40.839 70.779 80.729 2
U-Net0.957 40.908 60.872 80.834 4
Linknet0.957 70.910 00.874 30.836 7
MCFCN20.958 10.915 30.879 70.844 8
MCFCN2+后处理0.962 10.924 30.892 00.860 1

2020年

SVM0.876 00.684 90.589 00.547 5
FCN8s0.931 70.844 00.789 90.735 8
U-Net0.955 50.905 50.870 40.829 1
Linknet0.955 70.904 00.869 40.826 9
MCFCN20.961 20.914 10.883 50.843 7
MCFCN2+后处理0.967 30.928 70.902 80.868 2
Table 3  Comparison of test area results
模型参数量(106训练速度(FPS)
UNet3.408 994.77
Linknet8.328 675.32
MCFCN23.414 888.31
Table 4  Model parameter scale
Fig.7  Comparison of test area results between 2016 and 2020
Fig.8  Comparison results after post-processing
Fig.9  Study area division and results in 2016 and 2020
2016年2020年
已利用/km2未利用/km2已利用比例已利用/km2未利用/km2已利用比例
滨海旅游区0.46422.3762.03%1.55721.1036.87%
东疆港区10.23925.68428.50%10.79224.68330.42%
北疆港区25.4764.70284.42%24.5865.31582.22%
南疆港区15.42111.00258.36%15.34911.33657.52%
临港工业区115.67056.71221.65%17.84057.22523.77%
临港工业区20.42028.6961.44%0.29722.5101.30%
整体67.690149.17231.21%70.421142.17233.12%
Table 5  Land use change between 2016 and 2020
Fig.10  Land area and land use area in 2016 and 2020
1 Suo Anning, Wang Peng, Yuan Daowei,et al. Study on monitoring and analysis of existing sea reclamation resource based on high resolution satellite remote sensing imagery:A case in south coast of Yingkou[J]. Acta Oceanologica Sinica,2016,38(9):54-63.
1 索安宁, 王鹏,袁道伟,等. 基于高空间分辨率卫星遥感影像的围填海存量资源监测与评估研究——以营口市南部海岸为例[J]. 海洋学报,2016,38(9):54-63.]
2 Gao Ning, Du Xinyuan, Xu Peng,et al. Monitoring technology and method of doubtful area in reclamation area[J]. Ocean Development and Management,2019,36(2):14-16.
2 高宁, 杜新远,许鹏,等. 围填海疑点疑区监测技术方法[J]. 海洋开发与管理,2019,36(2):14-16.]
3 Sun Jing, Zhang Ying, Qiao Qinghua,et al. Reclamation project monitoring and ecosystem service value change analysis[J]. Science of Surveying and Mapping,2020,45(12):201-208.
3 孙静,张英,乔庆华,等. 围填海工程监测及生态系统服务价值变化分析[J].测绘科学,2020,45(12):201-208.]
4 Jia Wei, Gao Xiaohong, Yang Lingyu,et al. Land cover information extraction for complicated terrain regions via an object-oriented classification method[J]. Journal of Lanzhou University(Natural Sciences Edition),2018,54(4):486-493.
4 贾伟,高小红,杨灵玉,等. 面向对象方法的复杂地形区地表覆盖信息提取[J].兰州大学学报(自然科学版),2018,54(4):486-493.]
5 Ju Mingming, Wang Min, Zhang Dong,et al. Study on the remote-sensing-based monitoring of reclamation project area by using the object-oriented image analysis technique[J]. Marine Science Bulletin,2013,32(6):678-684.
5 鞠明明,汪闽,张东,等. 基于面向对象图像分析技术的围填海用海工程遥感监测[J]. 海洋通报,2013,32(6):678-684.]
6 Zhou Tianya.Object-oriented land cover classification using high spatial resolution remote sensing[J]. Geomatics Science and Technology,2020,8(1):9-16.
6 周天涯. 面向对象的高空间分辨率遥感土地覆盖分类[J].测绘科学技术,2020,8(1): 9-16.]
7 Rao Ping, Wang Jianli, Wang Yong,et al. Extraction of information on construction land based on multi-feature decision tree classificationExtraction of information on construction land based on multi-feature decision tree classification[J]. Transactions of the Chinese Society of Agricultural Engineering,2014,30(12):233-240.
7 饶萍,王建力,王勇. 基于多特征决策树的建设用地信息提取[J]. 农业工程学报,2014,30(12):233-240.]
8 Zhang Hongmei, Wu Jiwen, Liu Xing,et al. Land use classification based on feature extraction and decision tree method[J]. Science of Surveying and Mapping, 2014,39(10):53-56.
8 张红梅,吴基文,刘星,等. 特征提取和决策树法土地利用遥感分类[J]. 测绘科学,2014,39(10):53-56.]
9 Zhang Qian. Research on land cover classification of aerial hyperspectral remote sensing based on decision tree method[D]. Ji'nan: Shandong University of Science and Technology,2015[张倩. 基于决策树方法的航空高光谱遥感土地覆盖分类研究[D]. 济南:山东科技大学,2015.]
10 Shen Zhaoqing, Huang Liang, Tao Jianbin. Hyperspectral RS image road feature extraction based on SVM[J]. Journal of Chang’an University (Natural Science Edition),2012,32(5): 34-38.
10 沈照庆,黄亮,陶建斌. 基于支持向量机的高光谱遥感影像道路提取[J]. 长安大学学报(自然科学版),2012,32(5):34-38.]
11 Yuan Yongsheng. Research on object-oriented land cover image classification method based on support vector machine classification[D].Xianyang:Northwest A&F University.
11 员永生. 基于支持向量机分类的面向对象土地覆被图像分类方法研究[D]. 咸阳:西北农林科技大学,2010.
12 Zhu Jieer. Research on support vector machine classification of hyperspectral images combined with spatial information[D]. Hangzhou: Zhejiang University.
12 朱洁尔. 结合空间信息的高光谱图像支持向量机分类研究[D]. 杭州:浙江大学,2013.
13 Le Cun, Bengio Yoshua. Convolutional networks for images, speech, and time series[J]. The Handbook of Brain Theory and Neural Networks, 1995,3361(10):255-258.
14 Cao Linlin, Li Haitao,HanYanshun, et al. Application of convolutional neural networks in classification of high resolution remote sensing imagery[J]. Science of Surveying and Mapping, 2016,41(9):170-175.
14 曹林林,李海涛,韩颜顺,等. 卷积神经网络在高分遥感影像分类中的应用[J]. 测绘科学,2016,41(9):170-175.
15 Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]∥ 2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), 2015: 3431-3440.DOI: .
doi: 10.1109/CVPR.2015.7298965
16 Ronneberger O, Fischer O, Brox T. U-Net: convolutional networks for biomedical image segmentation[J]. Medical Image Computing and Computer-Assisted Intervention, Pt Iii, 2015,9351:234-241. DOI: .
doi: 10.1007/978-3-319-24574-4_28
17 Su Jianmin, Yang Lanxin, Jing Weipeng. U-Net based semantic segmentation method for high resolution remote sensing image[J]. Computer Engineering and Applications, 2019,55(7):207-213.
17 苏健民,杨岚心,景维鹏. 基于U-Net的高分辨率遥感图像语义分割方法[J]. 计算机工程与应用,2019,55(7):207-213.]
18 Xu Huimin. Research on high resolution remote sensing image classification method based on deep learning U-Net model[D]. Chengdu: Southwest Jiaotong University.
18 许慧敏. 基于深度学习U-Net模型的高分辨率遥感影像分类方法研究[D]. 成都:西南交通大学,2018.
19 Chaurasia A, Culurciello E. LinkNet: Exploiting encoder representations for dfficient semantic segmentation[C]∥2017 IEEE Visual Communications and Image Processing (VCIP),2017. DOI: .
doi: 10.1109/ VCIP.2017.8305148
20 Li L, Wang C, Zhang H, et al. Residual unet for urban building change detection with Sentinel-1 SAR data[J]. 2019 IEEE International Geoscience and Remote Sensing Symposium(IGARSS 2019),2019:1498-1501. DOI: .
doi: 10.1109/IGARSS. 2019.8898146
21 Sergey I, Christian S. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]∥ International Conference on Machine Learning. PMLR, 2015: 448-456. DOI: .
doi: 10.5555/3045118.3045167
22 Wu G M, Shao X W, Guo Z L, et al. Automatic building segmentation of aerial imagery using multi-constraint fully convolutional networks[J]. Remote Sensing,2018,10:407. DOI: .
doi: 10. 3390/rs10030407
23 Chen L C, Papandreou G, Kokkinos I,et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2018,40(4):834-848. DOI: .
doi: 10.1109/TPAMI.2017.2699184
24 Bittner K, Cui S, Reinartz P. Building extraction from remote sensing data using fully convolutional networks[J]. ISPRS Hannover Workshop: Hrigi 17-Cmrt 17-Isa 17-Eurocow 17, 2017,42-1(W1):481-486. DOI: .
doi: 10.5194/isprs-archives-XLII-1-W1-481-2017
25 Mark Everingham, Gool Luc Van, Williams Christopher K I, et al. The pascal Visual Object Classes (VOC) challenge[J]. 2010,8(2):303-338. DOI: .
doi: 10.1007/s11263-009-0275-4
26 Polak M, Zhang H, Pi M H. An evaluation metric for image segmentation of multiple objects[J]. Image and Vision Computing, 2009,27(8):1223-1227. DOI: .
doi: 10.1016/j.imavis. 2008.09.008
27 Carletta J. Assessing agreement on classification tasks: The Kappa statistic[J].Computational Linguistics,1996,22(2): 249-254. DOI: .
doi: 10.5555/230386.230390
No Suggested Reading articles found!