Please wait a minute...


Remote Sensing Technology and Application  2022, Vol. 37 Issue (4): 888-896    DOI: 10.11873/j.issn.1004-0323.2022.4.0888
Spatiotemporal Changes of Evapotranspiration on the Qinghai-Tibet Plateau from 2001 to 2018 based on GLASS Data
Junfei Cai1,2(),Wei Zhao1(),Mengjiao Yang1,2,Qiqi Zhan1,2,Hao Fu1,3,Kunlong He1,4
1.Institute of Mountain Hazards and Environment,Chinese Academy of Sciences,Chengdu 610041,China
2.University of Chinese Academy of Sciences,Beijing 100049,China
3.College of Earth Sciences,Chengdu University of Technology,Chengdu 610059,China
4.School of energy and power,Xihua University,Chengdu 610039,China
Download:  HTML  PDF (4878KB) 
Export:  BibTeX | EndNote (RIS)      

It is of great practical significance for the local sustainable agricultural water resources planning and to understand the plateau climate change to study the characteristics of the spatiotemporal changes of evapotranspiration in the Qinghai-Tibet Plateau. Based on the GLASS land surface latent heat flux product to analyze the characteristics of the spatiotemporal changes of evapotranspiration and its relationship with temperature, precipitation, and vegetation in the Qinghai-Tibet Plateau from 2001 to 2018, with the Mann-Kendall trend analysis method, in consideration of China's ecogeographical divisions. The results showed that: ①GLASS ET can reasonably simulate the distribution characteristics of evapotranspiration over the Qinghai-Tibet Plateau. ②The multi-year annual average evapotranspiration in the Qinghai-Tibet Plateau is 296.52mm, with higher values in the southeast but lower values in the northwest, the southern wing of the Eastern Himalayas is the highest (690.94 mm) and the Qaidam Basin is the lowest (163.47 mm). ③The inter-annual variation of evapotranspiration in the Qinghai-Tibet Plateau has increased volatility, and only the southern flank of the Eastern Himalayas has been declining in the past 18 years. ④During the study period, the evapotranspiration of the Qinghai-Tibet Plateau with a substantial increase trend, accounting for 47.44%, mainly located at the eastern edge of the plateau and the Midwestern hinterland; with a significant decreasing trend accounted for 3.82%, mainly concentrated in the southern wing of the Eastern Himalayas. ⑤The spatial distribution of evapotranspiration is negatively correlated with temperature in arid areas, and positively correlated with humid areas; it is generally positively correlated with the spatial pattern of precipitation. ⑥Evapotranspiration has a good positive correlation with the spatial distribution of NDVI; The correlation with the change trend of NDVI is more complicated, mostly positively correlated, and a small part are negatively correlated.

Key words:  Evapotranspiration      Qinghai-Tibet Plateau      Spatiotemporal variation      Trend analysis      GLASS     
Received:  26 December 2021      Published:  28 September 2022
Corresponding Authors:  Wei Zhao     E-mail:;
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
Articles by authors
Junfei Cai
Wei Zhao
Mengjiao Yang
Qiqi Zhan
Hao Fu
Kunlong He

Cite this article: 

Junfei Cai,Wei Zhao,Mengjiao Yang,Qiqi Zhan,Hao Fu,Kunlong He. Spatiotemporal Changes of Evapotranspiration on the Qinghai-Tibet Plateau from 2001 to 2018 based on GLASS Data. Remote Sensing Technology and Application, 2022, 37(4): 888-896.

URL:     OR

V中亚热带A 湿润地区VA6东喜马拉雅南翼
HI高原亚寒带B 半湿润地区HIB1果洛那曲丘状高原
C 半干旱地区HIC1青南高原宽谷
D 干旱地区HID1昆仑高山高原
HII高原温带A/B 湿润/半湿润地区HIIA/B1川西藏东高山深谷
C 半干旱地区HIIC1青东祁连山地
D 干旱地区HIID1柴达木盆地
Table 1  The main eco-geographic regionalization of the Qinghai-Tibetan Plateau
Fig.1  Comparison of the GLASS ET and annual ET
Fig.2  Average annual ET on the Qinghai-Tibet Plateau from 2001 to 2018
HIIC2250.42569. 00342.85
VA6427. 001 184.23690.94
Table 2  The minimum, maximum and average annual average ET of each eco-geographic area of the Qinghai-Tibet Plateau from 2001 to 2018
Fig.3  Annual variation of ET in the Qinghai-Tibet Plateau and various eco-geographic regions from 2001 to 2018
Fig.4  Trend of change and change rate of ET on the Qinghai-Tibet Plateau from 2001 to 2018
Fig.5  Average annual temperature and annual average precipitation on the Qinghai-Tibet Plateau from 2001 to 2018
Fig.6  The average annual NDVI and trend of change in the past 18 years
1 Wang K C, Dickinson RE. A review of global terrestrial evapotranspiration:Observation,modeling,climatology,and climatic variability[J]. Reviews of Geophysics,2012,50(2):000373. DOI: .
doi: 10. 1029/2011RG000373
2 Jung M, Reichstein M, Ciais P, et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply[J]. Nature,2010,467(7318):951-954. DOI: .
doi: 10.1038/ nature09396
3 Li Z L, Tang R, Wan Z, et al. A review of current methodologies for regional evapotranspiration estimation from remotely sensed data[J].Sensors,2009,9(5):3801-3853.DOI: .
doi: 10.3390/ s90503801
4 Qiu J.China:The third pole[J].Nature News,2008,454(7203): 393-396. DOI: .
doi: 10.1038/454393a
5 Li T, Chen Y Z, Han L J, et al. Shortened duration and reduced area of frozen soil in the Northern Hemisphere[J]. The Innovation,2021,2(3):100146.DOI: .
doi: 10.1016/j.xinn. 2021. 100146
6 Chen Deliang, Xu Baiqing, Yao Tandong, et al. Assessment of past, present and future environmental changes on the Tibetan Plateau [J]. Chinese Science Bulletin, 2015, 60(32):3025-3035.
6 陈德亮, 徐柏青, 姚檀栋, 等. 青藏高原环境变化科学评估:过去、现在与未来[J]. 科学通报,2015,60(32):3025-3035.
7 Yang M, Zhao W, Zhan Q, et al. Spatiotemporal patterns of land surface temperature change in the Tibetan Plateau based on MODIS/Terra daily product from 2000 to 2018[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2021,14:6501-6514. DOI: .
doi: 10.1109/JSTARS. 2021.3089851
8 Immerzeel W W, Van Beek L P, M F Js Bierkens. Climate change will affect the Asian water towers[J]. Science, 2010, 328(5984):1382-1385. DOI: .
doi: 10.1126/science.11831
9 Xie G, Li J F, Wang S Q, et al. Bridging the knowledge gap on the evolution of the Asian monsoon during 26–16 Ma[J]. The Innovation,2021,2(2):100110. DOI: .
doi: 10.1016/j.xinn. 2021.100110
10 Wang L, Good S P, Caylor K K. Global synthesis of vegetation control on evapotranspiration partitioning[J]. Geophysical Research Letters 2014,41(19):6753-6757. DOI: .
doi: 10.1002/2014GL061439
11 Liang S, Cheng J, Jia K, et al. The Global Land Surface Satellite (GLASS) product suite[J]. Bulletin of the American Meteorological Society,2021,102(2):E323-E337.DOI: .
doi: 10. 1175/BAMS-D-18-0341.1
12 Song L, Liu S, Kustas W P, et al. Monitoring and validating spatially and temporally continuous daily evaporation and transpiration at river basin scale[J]. Remote Sensing of Environment, 2018, 219:72-88. DOI: .
doi: 10.1016/j.rse.2018.10.002
13 Zheng Du. Study on the Eco-geographical region system of China[M]. Beijing: The Commercial Press,2008.
13 郑度.中国生态地理区域系统研究[M].北京: 商务印书馆,2008.
14 Mu Q, Zhao M, Running S W. Improvements to a MODIS global terrestrial evapotranspiration algorithm[J]. Remote Sensing of Environment,2011,115(8):1781-1800. DOI: .
doi: 10. 1016/j.rse.2011.02.019
15 Yuan W, Liu S, Yu G, et al. Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data[J]. Remote Sensing of Environment, 2010,114(7):1416-1431. DOI: .
doi: 10.1016/j.rse.2010.01.022
16 Fisher J B, Tu K P, Baldocchi D D. Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites[J]. Remote Sensing of Environment, 2008, 112(3):901-919. DOI: .
doi: 10.1016/j.rse.2007.06.025
17 Yao Y, Liang S, Cheng J, et al. MODIS-driven estimation of terrestrial latent heat flux in China based on a modified Priestley-Taylor algorithm[J]. Agricultural and Forest Meteorology,2013,171-172:187-202.DOI: .
doi: 10.1016/j.agrformet. 2012. 11.016
18 Wang K C, Dickinson R E, Wild M, et al. Evidence for decadal variation in global terrestrial evapotranspiration between 1982 and 2002: 1. Model development[J]. Journal of Geophysical Research,2010,115(D20):013847. DOI: .
doi: 10.1029/ 2010JD013847
19 Yao Y, Liang S, Li X, et al. Bayesian multimodel estimation of global terrestrial latent heat flux from eddy covariance, meteorological, and satellite observations[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(8):4521-4545. DOI: .
doi: 10.1002/2013JD020864
20 Yao Y, Liang S, Li X, et al. A satellite-based hybrid algorithm to determine the Priestley–Taylor parameter for global terrestrial latent heat flux estimation across multiple biomes[J]. Remote Sensing of Environment, 2015, 165:216-233. DOI: .
doi: 10.1016/j.rse.2015.05.013
21 Mu Q, Zhao M, Running S W J R. Improvements to a MODIS global terrestrial evapotranspiration algorithm[J]. 2011, 115(8):1781-1800. DOI: .
doi: 10.1016/j.rse.2011.02.019
22 Niu Z, He H, Zhu G, et al. A spatial-temporal continuous dataset of the transpiration to evapotranspiration ratio in China from 1981-2015[J]. Scientific Data, 2020,7(1):1-13. DOI: .
doi: 10.1038/s41597-020-00693-x
23 Niu Z, He H, Zhu G, et al. An increasing trend in the ratio of transpiration to total terrestrial evapotranspiration in China from 1982 to 2015 caused by greening and warming[J]. Agricultural and Forest Meteorology, 2019, 279:107701. DOI: .
doi: 10.1016/j.agrformet.2019.107701
24 Hamed K H, Rao A R. A modified Mann-Kendall trend test for autocorrelated data[J]. Journal of Hydrology, 1998. 204(1-4):182-196. DOI: .
doi: 10.1016/S0022-1694(97)00125-X
25 Kendall M G. Rank correlation methods[M]. London:Grffin,1975.
26 Yang X, Huang P.Restored relationship between ENSO and In-dian summer monsoon rainfall around 1999/2000[J].The Inno-vation,2021,2(2):100102. DOI: .
doi: 10.1016/j.xinn.2021.100102
27 Han C, Ma Y, Wang B, et al. Long-term variations in actual evapotranspiration over the Tibetan Plateau[J]. Earth System Science Data, 2021, 13(7):3513-3524. DOI: .
doi: 10.5194/essd-13-3513-2021
28 An Chunchun.Monitoring of vegetation phenology based on MODIS data and its response to climate change in Tibetan Plateau,China[D].Chengdu:University of Chinese Academy of Sciences(Institute of Mountain Hazards and Environment),2019.
28 安淳淳.基于MODIS数据的青藏高原植被物候监测及其对气候变化的响应研究[D].成都: 中国科学院大学(中国科学院水利部成都山地灾害与环境研究所),2019.
29 Chen J, Yan F, Lu Q.Spatiotemporal variation of vegetation on the Qinghai-Tibet Plateau and the influence of climatic factors and human activities on vegetation trend(2000—2019)[J].Remote Sensing,2020,12(19).DOI: .
doi: 10.3390/rs 12193150
No Suggested Reading articles found!