Please wait a minute...
img

Wechat

Remote Sensing Technology and Application  2022, Vol. 37 Issue (4): 897-907    DOI: 10.11873/j.issn.1004-0323.2022.4.0897
    
Research on the Spatial-Temporal Process of Urbanization in Chengdu-Chongqing Region based on Nighttime Light from 2000 to 2018
Han Wang1,2(),Ziyuan Hu3(),Fuquan Li3,Yuke Zhou1,2
1.Key Laboratory of Ecosystem Network Observation and Modeling,Institute of Geographic and Nature Resources Research,Chinese Academy of Sciences,Beijing 100101,China
2.University of Chinese Academy of Sciences,Beijing 100049,China
3.No. 7 Geological Brigade,Shandong Bureau of Geology and Mineral Resources Exploration and Development,Linyi 27600,China
Download:  HTML  PDF (6891KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Chengdu-Chongqing urban agglomeration is gradually becoming the growth pole of economic development in western China. Exploring the spatial and temporal pattern of urbanization in Chengdu-Chongqing urban agglomeration has a guiding role for regional coordinated development. Based on the integrated nighttime light remote sensing data from 2000 to 2018, this paper extracted the spatial scope of multi-stage built-up areas of urban agglomerations, using noctilucent scale statistics, standard ellipse, rank-size rule and spatial autocorrelation and other indicators and models to quantitatively analyze the spatial and temporal process of urbanization in this region. The main conclusions are as follows: (1) the multi-year average error of the built-up area extraction with the combination of light and statistical data is 1.27%, which is effective in Chongqing, Chengdu and Mianyang. (2) In the past 19 years, the scale of noctilucent in Chengdu-Chongqing cities increased significantly, with an overall cumulative increase of 5.658 times. After 2010, the scale of light in Chengdu-Chongqing urban agglomeration expanded significantly; (3) The rank-scale of cities in the region shifted from the concentrated development of high-ranking cities to the coordinated and balanced development of the region, and small and medium-sized cities all expanded to varying degrees; (4) The center of gravity of urban agglomeration is located in Anyue County, Ziyang City, Sichuan Province. The center of gravity movement is mainly in the southeast direction, and the spatial pattern evolves along the axis of "Chengdu-Chongqing" from northwest to southeast, indicating that the southeast metropolitan circle dominated by Chongqing has a stronger radiating and driving role and has more influence on the development of urban agglomeration. (5) The spatial agglomeration degree of Chengdu-Chongqing urban agglomeration is gradually strengthened. The overall pattern of cold hot spots is characterized by a large proportion of cold spots and a low proportion of hot spots. The hot spots are mainly located in the main urban areas of Chengdu and Chongqing and their surrounding towns. This study reveals the characteristics and hotspots of balanced development of Chengdu-Chongqing urban agglomeration, which can be used as a reference for future urban function planning and investment decisions.

Key words:  Nighttime light      Urban expansion      Rank-size rule      Temporal-spatial evolution characteristic      Chengdu-Chongqing urban agglomeration     
Received:  08 November 2021      Published:  28 September 2022
P237  
Corresponding Authors:  Ziyuan Hu     E-mail:  wanghanzora@163.com;hzy0618@163.com
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Han Wang
Ziyuan Hu
Fuquan Li
Yuke Zhou

Cite this article: 

Han Wang,Ziyuan Hu,Fuquan Li,Yuke Zhou. Research on the Spatial-Temporal Process of Urbanization in Chengdu-Chongqing Region based on Nighttime Light from 2000 to 2018. Remote Sensing Technology and Application, 2022, 37(4): 897-907.

URL: 

http://www.rsta.ac.cn/EN/10.11873/j.issn.1004-0323.2022.4.0897     OR     http://www.rsta.ac.cn/EN/Y2022/V37/I4/897

Fig.1  Map of the study area
Fig.2  Fitting relationship between DMSP/OLS and NPP/VIIRS
城市建成区划分阈值(DN值)
2000年2005年2010年2015年2018年
成都市46.0050.0055.0053.4152.78
重庆市39.0047.0041.0046.9048.92
德阳市30.0049.0052.0050.8751.52
广安市20.0045.0038.0050.2349.57
乐山市17.0029.0035.0046.9049.57
泸州市22.0031.0024.0041.2444.13
眉山市24.0028.0036.0045.5348.25
绵阳市45.0044.0053.0048.9249.57
南充市32.0045.0046.0049.5752.15
内江市18.0039.0034.0048.2549.57
遂宁市14.0041.0043.0047.5849.57
雅安市19.0024.0030.0042.7046.22
宜宾市22.0040.0031.0043.4246.22
达州市26.0051.0042.0045.5347.58
资阳市22.0038.0039.0044.1350.23
自贡市17.0034.0028.0039.7444.83
Table.1  The extraction threshold values of built-up areas in different periods of each city
Fig.3  Extraction results of built-up areas in Chongqing and Chengdu
Fig.4  Statistics on the scale of nighttime light in various cities
Fig.5  The growth of nighttime light in Chengdu-Chongqing Urban Agglomeration
Fig.6  The cumulative growth rate of nighttime light in various cities
Fig.7  The changes of the rank-scale logarithmic of Chengdu-Chongqing urban agglomeration
Fig.8  Center of gravity migration in Chengdu-Chongqing urban agglomeration
城市群Moran’s I
2000—20052005—20102010—20152015—2018
成渝城市群-0.430-0.0080.0830.134
Table.2  Global autocorrelation index of urban expansion in Chengdu-Chongqing urban agglomeration in different periods
Fig.9  Analysis on hot spots of urban space expansion in Chengdu-Chongqing urban agglomeration
1 Xinhua News Agency. Xi Jinping Presided over the Sixth Meeting of the Financial and Economic Commission of the Central Financial and Economic Commission: Emphasizing ecological protection and high-quality development of the Yellow River Basin and vigorously promoting the construction of Chengdu-Chongqing Economic Circle [J]. Contemporary Party Member, 2020(2): 11.
1 新华社. 习近平主持召开中央财经委员会第六次会议强调:抓好黄河流域生态保护和高质量发展大力推动成渝地区双城经济圈建设[J]. 当代党员,2020(2): 11.
2 Research Group of Institute of Land Development and Regional Economy, Chinese Academy of Macroeconomic Research, GaoGuoli, LiuBaokui, et al. Study on the evolution characteristics and trend of Chinese urbanization spatial form[J]. Revolution, 2020(9):128-138.
2 中国宏观经济研究院国土开发与地区经济研究所课题组,高国力,刘保奎,等. 我国城镇化空间形态的演变特征与趋势研判[J]. 改革,2020(9): 128-138.
3 State Council of the People's Republic of China. Approval of the State Council on the development plan of Chengdu-Chongqing Urban Agglomeration [J]. Bulletin of the State Council of the People's Republic of China, 2016(12):27-28.
3 中华人民共和国国务院. 国务院关于成渝城市群发展规划的批复[J]. 中华人民共和国国务院公报,2016(12):27-28.
4 Li Junfeng, Pan Jinghu. Spatial expansion of cities at county-level in Gansu Province from 1992 to 2012 based on DMSP nighttime images[J]. Journal of Glaciology and Geocryology, 2016, 38(3): 829-835.
4 李俊峰,潘竟虎. 基于夜间灯光的1992-2012年甘肃省城市空间扩展研究[J]. 冰川冻土, 2016, 38(3): 829-835.
5 Zhang Dacheng. Research on the development trajectory of Hangzhou bay urban agglomeration based on nighttime remote sensing[D]. Hangzhou: Zhejiang University, 2019.
5 张大成. 基于夜光遥感的杭州湾城市群发展轨迹研究[D]. 杭州: 浙江大学, 2019.
6 Gao B, Huang Q X, He C Y, et al. Dynamics of urbanization levels in China from 1992 to 2012: Perspective from DMSP/OLS nighttime light data[J]. Remote Sensing, 2015, 7(2): 1721-1735. DOI: .
doi: 10.3390/rs70201721
7 Wang Hua, Zheng Bohong, Wang Zhiyuan. A study of the evolution characteristics of built-up areas in Chang-Zhu-Tan urban agglomeration based on DMSP/OLS data[J].Remote Sen-sing for Land & Resources, 2020,32(4):175-184.
7 汪华,郑伯红,王志远. 基于DMSP/OLS数据的长株潭城市群建成区演变特征研究[J]. 国土资源遥感,2020,32(4):175-184.
8 Zhu Shunjuan. Spatial structure and optimization of Changsha-Zhuzhou-Xiangtan urban agglomeration[D]. Changsha: Central South University, 2012.
8 朱顺娟. 长株潭城市群空间结构及其优化研究[D]. 长沙: 中南大学, 2012.
9 Qiu Yaqian. Spatial-temporal pattern evolution analysis of urban agglomeration in the middle reaches of the Yangtze River based on nighttime light remote sensing image[D]. Wuhan: Wuhan University, 2019.
9 仇雅倩. 基于夜光遥感影像的长江中游城市群时空格局演变分析[D]. 武汉: 武汉大学, 2019.
10 Li Guihua, Fan Junfu, Zhou Yuke, et al. Development and characteristics estimation of Shandong peninsula urban agglomeration using VIIRS night-light data[J]. Remote Sensing Technology and Application, 2020, 35(6): 1348-1359.
10 李桂华,范俊甫,周玉科,等. 基于VIIRS夜间灯光数据的山东半岛城市群发展特征研究[J]. 遥感技术与应用, 2020, 35(6): 1348-1359.
11 Dong Chenwei, Cao Yu, Tan Yongzhong. Urban expansion and vegetation changes in Hangzhou bay area using night-light data[J]. Chinese Journal of Applied Ecology, 2017,28(1): 231-238.
11 董晨炜,曹宇,谭永忠. 基于夜间灯光数据的环杭州湾城市扩张及植被变化[J]. 应用生态学报, 2017,28(1): 231-238.
12 Alahmadi M, Atkinson P M. Three-fold urban expansion in Saudi Arabia from 1992 to 2013 observed using calibrated DMSP-OLS night-time lights imagery[J]. Remote Sensing, 2019, 11(19): 2266. DOI: .
doi: 10.3390/rs11192266
13 He Chunyang, Shi Peijun, Li Jinggang, et al. Reconstruction of the spatial process of urbanization in the 1990s in mainland China based on DMSP/OLS night-light data and statistics[J]. Chinese Science Bulletin,2006,51(7):856-861.
13 何春阳,史培军,李景刚,等. 基于DMSP/OLS夜间灯光数据和统计数据的中国大陆20世纪90年代城市化空间过程重建研究[J]. 科学通报, 2006,51(7):856-861.
14 Zhang Wenbin, Zhang Zhibin, Zhou Yi, et al. Temporal-spatial evolution characteristics of Lanxi urban agglomeration based on night-light data[J]. Remote Sensing Information, 2020, 35(6): 38-43.
14 张文斌,张志斌,周翼,等. 基于夜间灯光数据的兰西城市群时空演变特征[J]. 遥感信息, 2020, 35(6): 38-43.
15 Yang Renfei, Luo Hongxia, Zhou Sheng, et al. Restoring and analyzing the space forming process of Chengdu-Chongqing urban agglomeration by using DMSP/OLS night-light data[J]. Journal of Geo-information Science,2017,19(5):77-85.
15 杨任飞,罗红霞,周盛,等. 夜间灯光数据驱动的成渝城市群空间形成过程重建及分析[J]. 地球信息科学学报,2017,19(5):77-85.
16 Liang Rubing, Chen Qingtao, Xia Zhiye, et al. Monitoring and analysis of urbanization process in Chengdu-Chongqing region using VANUI index[J]. Geomatics and Mapping Information, 2021, 46(S1): 210-215.
16 梁茹冰,陈庆涛,夏至业,等. 利用VANUI指数监测成渝地区的城市化进程与分析[J]. 测绘地理信息, 2021,46():210-215.
17 Dai Z X, Hu Y F, Zhao G H. The suitability of different nighttime light data for GDP estimation at different spatial scales and regional levels[J]. Sustainability, 2017, 9(2):305. DOI: .
doi: 10.3390/su9020305
18 Shi K F, Huang C, Yu B L, et al. Evaluation of NPP-VIIRS night-time light composite data for extracting built-up urban areas[J]. Remote Sensing Letters, 2014, 5(4-6): 358-366. DOI: .
doi: 10.1080/2150704X.2014.905728
19 Li X C, Zhou Y Y, Zhao M, et al. A harmonized global nighttime light dataset 1992-2018[J]. Scientific Data, 2020, 7(1). DOI: .
doi: 10.1038/s41597-020-0510-y
20 Sun Qinke, Zhou Liang, Shen Ruru, et al. Spatial heterogeneity of urban land use in Yangtze River economic belt based on DMSP/OLS data[J]. Remote Sensing Information, 2019, 34(4): 79-86.
20 孙钦珂,周亮,申如如,等. 基于DMSP/OLS数据的长江经济带城市用地空间分异特征[J]. 遥感信息, 2019,34(4):79-86.
21 Sun Lingwei. Discussion on urban expansion in Shandong Province based on Landsat data and DMSP/OLS night-light data[D]. Chongqing: Chongqing Normal University, 2017.
21 孙凌蔚. 基于Landsat数据和DMSP/OLS夜间灯光数据的山东省城市扩张探讨[D]. 重庆: 重庆师范大学, 2017.
22 George K. Human behavior and the principle of least effort: An introduction to human ecology[M]. Cambridge, Mass.: Addison-Wesley, 1949. DOI: .
doi: 10.1126/science.110.2868.669
23 Miller H J. Tobler's first law and spatial analysis[J]. Annals of the Association of American Geographers, 2004, 94(2): 284-289. DOI: .
doi: 10.1111/j.1467-8306.2004.09402005.x
No Suggested Reading articles found!