1 |
Yan Fei. Research of technology and method of forest resource inventory[D]. Beijing: Beijing Forestry University, 2014.
|
1 |
闫飞. 森林资源调查技术与方法研究[D]. 北京: 北京林业大学, 2014.
|
2 |
Wang Jinliang, Cheng Feng, Wang Cheng, et al. Primary discussion on the potential of forest volume estimating using ICESat-GLAS data in complex terrain area: A case study of Shangri-la, Yunnan Province[J]. Remote Sensing Technology and Application, 2012, 27(1):45-50.
|
2 |
王金亮,程峰,王成,等.基于ICESat-GLAS数据估算复杂地形区域森林蓄积量潜力初探——以云南香格里拉县为例[J]. 遥感技术与应用, 2012, 27(1):45-50.
|
3 |
Gang C, Hay G J, St-Onge B. A GEOBIA framework to estimate forest parameters from LiDAR transects, QuickBird imagery and machine learning: A case study in Quebec, Canada[J]. International Journal of Applied Earth Observations and Geoinformation, 2012, 15:28-37.
|
4 |
Liang Zhifeng, Ling Feilong, Wang Xiaoqin. Correlation analysis between L-band SAR and forest stem volume in Northeast China[J]. Remote Sensing Technology and Application,2013,28(5):871-878.
|
4 |
梁志锋,凌飞龙,汪小钦. L波段SAR与中国东北森林蓄积量的相关性分析[J]. 遥感技术与应用, 2013, 28(5):871-878.
|
5 |
Li Shibo, Lin Hui, Wang Guangming,et al.Estimation of forest volume based on GF-1[J]. Journal of Central South University of Forestry and Technology, 2019, 39(8):70-75,86.
|
5 |
李世波, 林辉, 王光明, 等. 基于GF-1的森林蓄积量遥感估测[J]. 中南林业科技大学学报, 2019, 39(8):70-75,86.
|
6 |
Pearse G D, Morgenroth J, Watt M S, et al. Optimising prediction of forest leaf area index from discrete airborne LiDAR[J]. Remote Sensing of Environment,2017,200(3):220-239.
|
7 |
Bian Rui, Yanyun Nian, Gou Xiaohua, et al. Analysis of forest canopy height based on UAV LiDAR: A case study of Picea Crassifolia in the east and central of the Qilian Mountains[J]. Remote Sensing Technology and Application, 2021, 36(3):511-520.
|
7 |
边瑞, 年雁云, 勾晓华, 等. 基于无人机激光雷达的森林冠层高度分析[J]. 遥感技术与应用, 2021, 36(3):511-520.
|
8 |
Li Wenjuan, Zhao Chuanyan, Bie Qiang, et al. Retrieval of the forest structural parameters using airborne LiDAR data[J]. Remote Sensing Technology and Application,2015,30(5):917-924.
|
8 |
李文娟,赵传燕,别强,等.基于机载激光雷达数据的森林结构参数反演[J].遥感技术与应用,2015,30(5):917-924.
|
9 |
Tang Xuguang. Estimation of forest aboveground biomass by integrating ICESat/GLAS waveform and TM data[D]. Changchun: Graduate University of Chinese Academy of Sciences (Northeast Institute of Geography and Agroecology), 2013.
|
9 |
汤旭光. 基于激光雷达与多光谱遥感数据的森林地上生物量反演研究[D]. 长春: 中国科学院研究生院(东北地理与农业生态研究所), 2013.
|
10 |
Zhao Xun, Yue Cairong, Li Chungan, et al. Estimation of forest canopy density based on airborne LiDAR point cloud data[J]. Remote Sensing Technology and Application, 2020, 35(5):1136-1145.
|
10 |
赵勋, 岳彩荣, 李春干, 等. 基于机载LiDAR点云数据森林郁闭度估测[J]. 遥感技术与应用, 2020, 35(5):1136-1145.
|
11 |
Wang Xiangyu, Xie Donghui, Wang Yan, et al. 3D reconstruction of an individual tree from terrestrial laser scanner data[J]. Remote Sensing Technology and Application, 2015, 30(3):455-460.
|
11 |
王向玉, 谢东辉, 汪艳, 等. 基于地面激光雷达点云数据的单木三维重建[J]. 遥感技术与应用, 2015, 30(3):455-460.
|
12 |
Cai Shuo. Extraction of tree diameter at breast height based on terrestrial laser scanning and backpack baser scanning[D]. Harbin: Northeast Forestry University, 2021.
|
12 |
蔡硕. 基于地基激光雷达和背包式激光雷达林木胸径提取[D]. 哈尔滨: 东北林业大学, 2021.
|
13 |
Cai Shuo, Xing Yanqiu, Duanmu jialong, et al. Extraction of DBH from filtering out low intensity point cloud by backpack laser scanning[J]. Forest Engineering, 2021, 37(5):12-19.
|
13 |
蔡硕, 邢艳秋, 端木嘉龙. 背包式激光雷达滤除低强度点云提取林木胸径[J]. 森林工程, 2021, 37(5):12-19.
|
14 |
Duanmu jialong. A study of planted forest DBH estimation algorithms using backpack laser scanning data[D]. Harbin: Northeast Forestry University, 2020.
|
14 |
端木嘉龙. 基于背包激光雷达数据的人工林林木胸径提取算法研究[D]. 哈尔滨:东北林业大学, 2020.
|
15 |
Xza B, Qga C, Ys C, et al. Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 117:79-91.
|
16 |
Lee H, Slatton K C, Roth B E, et al. Adaptive clustering of airborne LiDAR data to segment individual tree crowns in managed pine forests[J]. International Journal of Remote Sensing, 2010, 31(1):117-139.
|
17 |
Li W, Guo Q, Jakubowski M K, et al. A new method for segmenting individual trees from the LiDAR point cloud[J]. Photogrammetric Engineering and Remote Sensing, 2012, 78(1):75-84.
|
18 |
Qin M, Su Y, Guo Q. Comparison of canopy cover estimations from airborne LiDAR, aerial imagery, and satellite imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(9):4225-4236.
|
19 |
Richardson J J, Monika Moskal L, Kim S H. Modeling approaches to estimate effective Leaf Area Index from aerial discrete-return LiDAR[J]. Agricultural and Forest Meteorology, 2009, 149(6-7):1152-1160.
|
20 |
Li Y, Guo Q, Tao S, et al. Derivation, validation, and sensitivity analysis of terrestrial laser scanning-based leaf area index[J]. Canadian Journal of Remote Sensing, 2016, 42(6):719-729.
|
21 |
Shao Z, Zhang L, Wang L. Stacked sparse autoencoder modeling using the synergy of airborne LiDAR and satellite optical and SAR data to map forest above-ground biomass[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017,10(12):5567-5582.
|
22 |
Garcia-Gutierrez J, Martinez-Alvarez F, Troncoso A, et al. A comparison of machine learning regression techniques for LiDAR-derived estimation of forest variables[J]. Neurocomputing, 2015, 167(1):24-31.
|
23 |
Breiman L. Random forests[J]. Machine Learning, 2001, 45:5-32.
|
24 |
Franklin J. The elements of statistical learning: Data mining, inference and prediction[J]. The Mathematical Intelligencer, 2005, 27(2):83-85.
|
25 |
Qiangxin Ou, Lei Xiangdong, Shen Chenchen, et al. Individual tree DBH growth prediction of larch-spruce-fir mixed forests based on random forest algorithm[J]. Journal of Beijing Forestry University,2019,41(9):9-19.
|
25 |
欧强新, 雷相东, 沈琛琛, 等. 基于随机森林算法的落叶松-云冷杉混交林单木胸径生长预测[J]. 北京林业大学学报,2019,41(9):9-19.
|
26 |
Lim K, Treitz P, Wulder M, et al. LiDAR remote sensing of forest structure[J]. Progress in Physical Geography, 2003, 27(1):88-106.
|
27 |
Hu Y, Xu X, Wu F, et al. Estimating forest stock volume in Hunan Province, China, by integrating in situ plot data, Sentinel-2 images, and linear and machine learning regression models[J]. Remote Sensing,2020, 12(1):186. DOI: .
doi: 10.3390/rs 12010186
|
28 |
Sun Zhongqiu, Gao Jinping, Wu Fayun, et al. Estimating forest stock volume via small-footprint LiDAR point cloud data and random forest algorithm[J]. Forestry Science, 2021, 57(8):68-81.
|
28 |
孙忠秋, 高金萍, 吴发云, 等. 基于机载激光雷达点云和随机森林算法的森林蓄积量估测[J]. 林业科学, 2021, 57(8):68-81.
|
29 |
Pang Yong, Huang Kebiao, Li Zengyuan, et al. Forest aboveground biomass analysis using remote sensing in the Greater Mekong Subregion[J]. Resources Science, 2011, 33(10):1863-1869.
|
29 |
庞勇, 黄克标, 李增元, 等. 基于遥感的湄公河次区域森林地上生物量分析[J]. 资源科学, 2011, 33(10):1863-1869.
|
30 |
Cao Lin, Dai Jinsong, Xu Jianxin, et al. Optimized extraction of forest parameters in subtropical forests based on airborne small footprint LiDAR technology[J]. Journal of Beijing Forestry University, 2014, 36(5):13-21.
|
30 |
曹林, 代劲松, 徐建新, 等. 基于机载小光斑LiDAR技术的亚热带森林参数信息优化提取[J]. 北京林业大学学报, 2014, 36(5):13-21.
|