Please wait a minute...
img

Wechat

Remote Sensing Technology and Application  2022, Vol. 37 Issue (6): 1302-1310    DOI: 10.11873/j.issn.1004-0323.2022.6.1302
    
Characteristics and Control Mechanism of Mushketov Glacier Surging, Central Tianshan
Zhenfeng Wang1,2(),Zongli Jiang2(),Shiyin Liu3,Chuanguang Zhu2,Kunpeng Wu3,Zhen Zhang4,Sichun Long2
1.Hunan Provincial Key Laboratory of Geo-Information Engineering in Surveying,Mapping and Remote Sensing,Hunan University of Science and Technology,Xiangtan 411201,China
2.School of Earth Sciences and Spatial Information Engineering,Hunan University of Science and Technology,Xiangtan 411201,China
3.Institute of International Rivers and Eco-Security,Yunnan University,Kunming 650500,China
4.School of Geomatics,Anhui University of Science and Technology,Huainan 232001,China
Download:  HTML  PDF (5826KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The Tian Shan region hosts a large number of surge-type glacier, Detailed surge process and control mechanism analysis are still unclear for surge glaciers in Tian Shan. In this paper, the surface velocity and digital elevation models of the Mushketov Glacier in the central Tian Shan are obtained by feature-tracking of Sentinel-1A SAR data and differential Interferometry of TerraSAR-X/TanDEM-X, respectively. Geodetic method was employed to calculate the glacier surface elevation change. The results show that the surface velocity of the main stream of the glacier has increased significantly since the end of summer in 2017, reached its peak in winter, up to 4.4 m d-1 and decreased sharply at the end of summer in 2018. The middle and upper reaches of glacier from 2000 to 2012 are accumulated, with an average thickening of 9.23±4.62 m, and the ice tongue thinned dramatically; From 2012 to 2014, the ice tongue continued to thin, the average thickness of reservoir area increased by 1.23 ± 0.91 m; From 2014 to 2018, the glacier reservoir area was significantly thinned, with the maximum decrease of 42.6 ± 1.82 m, the elevation of the receiving area increased significantly, and the highest uplift was 75.6 ± 1.82 m. According to the change of elevation and the characteristics of flow velocity and analysis of glacier surge mechanism using glacier flow law, we concluded that the Mushkotov Glacier surged from 2017 to 2018, and the surge is mainly controlled by hydrological conditions. Combined with the available history data, it is inferred that the glacial surge interval is about 60 years.

Key words:  Glacier surge      Central Tianshan      Surface velocity      Surface elevation change     
Received:  21 October 2021      Published:  15 February 2023
ZTFLH:  TP79  
Corresponding Authors:  Zongli Jiang     E-mail:  1783792308@qq.com;jiangzongli@hnust.edu.cn
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Zhenfeng Wang
Zongli Jiang
Shiyin Liu
Chuanguang Zhu
Kunpeng Wu
Zhen Zhang
Sichun Long

Cite this article: 

Zhenfeng Wang,Zongli Jiang,Shiyin Liu,Chuanguang Zhu,Kunpeng Wu,Zhen Zhang,Sichun Long. Characteristics and Control Mechanism of Mushketov Glacier Surging, Central Tianshan. Remote Sensing Technology and Application, 2022, 37(6): 1302-1310.

URL: 

http://www.rsta.ac.cn/EN/10.11873/j.issn.1004-0323.2022.6.1302     OR     http://www.rsta.ac.cn/EN/Y2022/V37/I6/1302

Fig.1  Study area and distribution of remote sensing data
数据日期分辨率/m用途
Landsat/OLI

2015/08/14、2016/09/01

2017/07/02、2017/09/20

2018/07/31、2019/08/25

30冰川表面变化分析
Sentinel-1A2015/12/09—2020/01/065×20冰川流速和流向监测
TSX/TDX

2012/02/10、2014/03/03

2018/09/24

1.4×2.2冰川高程变化监测
SRTM2000-0230
AWD302009—201130辅助生成DEM
ICESat-22019/03/19、2019/03/21-DEM精度评估
Table 1  Multi resources remote sensing Data used
Fig.2  Histogram of velocities in no-glacier region
Fig.3  Elevation change in non-glacier area
Fig.4  Variation of daily average velocity along the mainstream of Mushketov Glacier
Fig.5  Surface velocities along the transverse profile TT' and PP'
Fig.6  Glacier surface elevation changes of Mushketov Glacier
Fig.7  Terminal changes of Mushketov Glacier tributary
Fig.8  Flow direction of Mushketov Glacier in surge section
Fig.9  distribution and variation of glacier thickness along central flow line
1 Sevestre H, Benn D I, Climatic and geometric controls on the global distribution of surge-type glaciers: Implications for a unifying model of surging[J]. Jounal of Glaciology, 2015, 61(228): 646-662. DOI: .
doi: 10.3189/2015JOG14J136
2 Yan J, Lv M, Ruan Z, et al. Evolution of Surge-Type Glaciers in the Yangtze River Headwater using multi-source remote sensing data[J]. Remote Sensing, 2019, 11(24): 2991. DOI: .
doi: 10.3390/rs11242991
3 Li Deji, You Yong. Bursting of the Midui Moraine Lake in Bomi,Xizang[J]. Journal of Mountain Science,1992(4):219-224.
3 李德基,游勇.西藏波密米堆冰湖溃决浅议[J].山地研究,1992(4):219-224.
4 Kotlyakov V M, Rototaeva O V, Nosenko G A. The september 2002 kolka glacier catastrophe in North Ossetia, Russian federation:Evidence and analysis[J]. Mountain Research and Development,2004,24:78-83. DOI: [0078:TSKGCI]2.0.CO;2.
doi: 10.1659/0276-4741(2004)024
5 Zhang Zhen, Liu Shiyin, Wei Junfeng, et al. Monitoring recent surging of the Karayaylak Glacier in Pamir by remote sensing[J].Journal of Glaciology and Geocryology,2016,38(1):11-20.
5 张震, 刘时银,魏俊锋,等. 新疆帕米尔跃动冰川遥感监测研究[J]. 冰川冻土,2016,38(1):11-20.
6 Kääb A, Leinss S, Gilbert A, et al. Massive collapse of two glaciers in Western Tibet in 2016 after surge-like instability[J]. Nature Geoscience, 2018, 11(2): 114-120. DOI: .
doi: 10.1038/s41561-017-0039-7
7 Bhambri R, Watson C S, Hewitt K, et al. The hazardous 2017-2019 surge and river damming by Shispare Glacier, Karakoram[J]. Scientific Reports,2020,10(4685). DOI: .
doi: 10. 1038/s41598-020-61277-8
8 Wendt A, Mayer C, Lambrecht A,et al.A glacier surge of Biva-chny glacier,Pamir mountains,observed by a time series of hi-ghresolution digital elevation models and glacier velocities[J].Remote Sensing,2017,9040388.DOI: .
doi: 10.3390/rs9040388
9 Meier M F, Post A. What are glacier surges?[J]. Canadian Journal of Remote Sensing,1969,6(4):807-817. DOI: .
doi: 10.1139/ e69-081
10 Jiskoot H, Murray T, Boyle P. Controls on the distribution of surge-type glaciers in Svalbard[J].Journal of Glaciology,2000,46(154):412-422. DOI: .
doi: 10.3189/172756500781833115
11 Pieczonka T, Bolch T. Region-wide glacier mass budgets and area changes for the Central Tien Shan between 1975 and 1999 using Hexagon KH-9 imagery[J]. Global & Planetary Change,2015,128:1-13. DOI: .
doi: 10.1016/j.gloplacha.2014. 11.014
12 Kotlyakov V M, Chernova L P, Khromova T Y, et al. Glacier surges and glacial disasters[J]. Doklady Earth Sciences, 2017, 472(1): 57-61. DOI: .
doi: 10.1134/S1028334X17010056
13 Quincey D J, Glasser N F, Cook S J, et al. Heterogeneity in Karakoram glacier surges[J].Journal of Geophysical Research:Earth Surface,2015,120(7):1288-1300. DOI: .
doi: 10.1002/2015JF003515
14 Barrand N E, Murray T. Multivariate controls on the incidence of glacier surging in the Karakoram Himalaya[J]. Arctic Antarctic & Alpine Research, 2006, 38(4): 489-498. DOI: [489:MCOTIO]2.0.CO;2.
doi: 10.1657/1523-0430(2006)38
15 Zhou S, Yao X, Zhang D, et al. Remote sensing monitoring of advancing and surging glaciers in the Tien Shan, 1990–2019[J].Remote Sensing,2021,13(10):1973.DOI: .
doi: 10.3390/rs13101973
16 Haeusler H, Ng F, Kopecny A, et al. Remote-sensing-based analysis of the 1996 surge of Northern Inylchek Glacier, central Tien Shan, Kyrgyzstan[J]. Geomorphology, 2016, 273:292-307. DOI: .
doi: 10.1016/j.geomorph.2016.08.021
17 Zhu Q, Ke C, Li H. Monitoring glacier surges in the Kongur Tagh area of the Tibetan Plateau using Sentinel-1 SAR data[J]. Geomorphology,2021,390:107869. DOI: .
doi: 10.1016/j.geomorph.2021.107869
18 Zhang M, Chen F, Tian B, et al. Characterization of kyagar glacier and lake outburst floods in 2018 based on time-series sentinel-1A data[J]. Water,2020,12(1):184. DOI: .
doi: 10.3390/w12010184
19 Kamb B, Raymond C F, Harrison W D, et al. Glacier surge mechanism: 1982-1983 surge of variegated Glacier, Alaska[J]. Science, 1985, 227(4686): 469-479. DOI: .
doi: 10.1126/science.227.4686.469
20 Murray T, Strozzi T, Luckman A, et al. Is there a single surge mechanism? Contrasts in dynamics between glacier surges in Svalbard and other regions[J]. Jounal of Geophysical Research,2003,108(B5):2237.DOI: .
doi: 10.1029/2002JB001906
21 Benn D I, Fowler A C, Hewitt I, et al. A general theory of glacier surges[J]. Journal of Glaciology, 2019, 65(253): 701-716. DOI: .
doi: 10.1017/jog.2019.62
22 Strozzi T, Luckman A, Murray T,et al. Glacier motion estimation using SAR offset-tracking procedures[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2384-2391. DOI: .
doi: 10.1109/TGRS.2002.805079
23 Strozzi T, Kouraev A, Wiesmann A, et al. Estimation of Arctic glacier motion with satellite L-band SAR data[J]. Remote Sensing of Environment, 2008, 112(3): 636-645. DOI: .
doi: 10.1016/j.rse.2007.06.007
24 Bolch T, Pieczonka T, Benn D I. Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery[J]. Cryosphere, 2011, 5(2): 349-358. DOI: .
doi: 10.5194/tc-5-349-201
25 Pritchard H, Murray T, Strozzi T, et al. Surge-related topographic change of the glacier Sortebrae, East Greenland, derived from synthetic aperture radar interferometry[J]. Journal of Glaciology, 2003, 49(166): 381-390. DOI: .
doi: 10.3189/172756503781830593
26 Li Z, Li J, Ding X, et al. Anomalous glacier changes in the Southeast of Tuomuer‐Khan Tengri Mountain Ranges, Central Tianshan[J]. Journal of Geophysical Research Atmospheres, 2018, 123: 6840-6863. DOI: .
doi: 10.1029/2017JD028150
27 Gardelle J, Berthier E, Arnaud Y, et al. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999-2011[J]. The Cryosphere,2013,7(4):1263-1286. DOI: .
doi: 10.5194/tc-7-1263-2013
28 Dehecq A, Gourmelen N, Gardner A S, et al. Twenty-first century glacier slowdown driven by mass loss in High Mountain Asia[J].Nature Geoence,2019,12:22-27. DOI: .
doi: 10.1038/S41561-018-0271-9
29 Cuffey K M, Paterson W, The physics of glaciers (4th Ed.) [M]. USA: Academic Press, 2010.
30 Jiang Z, Wu K, Liu S, et al. Surging dynamics of South Rimo Glacier,Eastern Karakoram[J].Environmental Research Letters,2021,16:114044. DOI: .
doi: 10.1088/1748-9326/ac3175
31 Farinotti D, Huss M, Fürst J, et al. A consensus estimate for the ice thickness distribution of all glaciers on earth[J]. Nature Geoscience, 2019,12:168-173. DOI: .
doi: 0.1038/s41561-019-0300-3
32 Dunse T, Schellenberger T, Hagen J O, et al. Glacier-surge mechanisms promoted by a hydro-thermodynamic feedback to summer melt[J]. The Cryosphere, 2015, 9(1): 197-215. DOI: .
doi: 10.5194/tc-9-197-2015
33 Round V, Leinss S, Huss M, et al. Surge dynamics and lake outbursts of Kyagar Glacier, Karakoram[J]. The Cryosphere, 2017, 11(2): 723-739. DOI: .
doi: 10.5194/tc-11-723-2017
34 Paul F, Strozzi T, Schellenberger T, et al. The 2015 surge of hispar glacier in the Karakoram[J]. Remote Sensing, 2017, 9(9): 888. DOI: .
doi: 10.3390/rs9090888
35 Xie Zichu, Liu Chaohai. Introduction to glaciology[M]. Shanghai: Shanghai Popular Science Press,2010:270-283.
35 谢自楚,刘潮海.冰川学导论[M]. 上海:上海科学普及出版社,2010:270-283.
[1] Rui YANG Su Yang. U-Net neural networks and its application in high resolution satellite image classification[J]. Remote Sensing Technology and Application, 0, (): 0 .
[2] Lin Yi , Zhou Guoqing, Tong Qingxi . Earth Observation-oriented Polarization LiDAR Remote SensingEarth Observation-oriented Polarization LiDAR Remote Sensing[J]. Remote Sensing Technology and Application, 2019, 34(2): 232 -242 .
[3] Zhili Li,Wenhui Kuang,Shu Zhang. Remote Sensing Monitoring and Spatiotemporal Pattern of Land Use/Cover Change in Built-up Area of Tianjin in the Past 70 Years[J]. Remote Sensing Technology and Application, 2020, 35(3): 527 -536 .
[4] Yuchen Guo,Jinchuan Huang,Haoxi Lin. Spatialization of China’s Population Data based on Multi-source Data[J]. Remote Sensing Technology and Application, 2020, 35(1): 219 -232 .
[5] Zhuo Wang,Haowen Yan,Xiaomin Lu,Tianwen Feng,Yazhen Li. High-resolution Remote Sensing Image Road Extraction Method for Improving U-Net[J]. Remote Sensing Technology and Application, 2020, 35(4): 741 -748 .
[6] Shimei Wei, Jinghu Pan, Wenliang Tuo. Estimation and Spatial-temporal Distribution Characteristics of PM2.5 Concentration by Remote Sensing in China in 2015[J]. Remote Sensing Technology and Application, 2020, 35(4): 845 -854 .
[7] Meng Li,Yanyun Nian,Rui Bian,Yanping Bai,Jinhui Ma. Classification of Picea crassifolia and Sabina przewalskii based on Multi-source Remote Sensing Images[J]. Remote Sensing Technology and Application, 2020, 35(4): 855 -863 .
[8] Jiechunyi Luo,Longjun Qin,Peng Mao,Yujiu Xiong,Wenli Zhao,Huihui Gao,Guoyu Qiu. Research Progress in the Retrieval Algorithms for Chlorophyll-a, a Key Element of Water Quality Monitoring by Remote Sensing[J]. Remote Sensing Technology and Application, 2021, 36(3): 473 -488 .
[9] He Liu,Lingjia Gu,Ruizhi Ren. Research Progress of Forest Parameter Acquisition based on UAV Remote Sensing Technology[J]. Remote Sensing Technology and Application, 2021, 36(3): 489 -501 .
[10] Zheying Feng,Linwei Yue,Huanfeng Shen. Accuracy Correction of GRACE Water Storage based on Multi-source Hydrological Data[J]. Remote Sensing Technology and Application, 2021, 36(3): 605 -617 .