Please wait a minute...
img

Wechat

Remote Sensing Technology and Application  2022, Vol. 37 Issue (6): 1492-1503    DOI: 10.11873/j.issn.1004-0323.2022.6.1492
    
Influence of Urban Buildings Forms on Land Surface Temperature: From a Gradient Perspective
Leiqi Tan1(),Liang Zhou1,2,3(),Li Li3,Bo Yuan1,4,Fengning Hu1,5
1.Faculty of Geomatics,Lanzhou Jiaotong University,Lanzhou 730070,China
2.Key Laboratory of Urban Land Resources Monitoring and Simulation of Ministry of;Natural Resources,Shenzhen 518034,China
3.Lanzhou Branch Chinese Academy of Sciences,Lanzhou 73000,China
4.Gansu Provincial Engineering Laboratory for National Geographic State Monitoring,Lanzhou 730070,China
5.National-Local Joint Engineering Research Center of Technologies and Applications for National;Geographic State Monitoring,Lanzhou 730070,China
Download:  HTML  PDF (4910KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

To explore the gradient and difference of the influence of different urban building forms on LST, Xi 'an, Zhengzhou, Jinan as the research area, based on Landsat 8 TIRS images and urban 3D building data. Based on the multiple linear regression model, the influences of building form on LST in different seasons in the three cities were analyzed and the differences were compared :(1) the cities with the largest influence on LST in summer and winter were Xi 'an (R2=0.414) and Jinan (R2=0.300). The building coverage rate and average building height have the greatest impact on LST in summer and winter, respectively, with positive and negative impacts. (2) After the gradient classification of building coverage, it is found that when the coverage rate is less than 20%, the building volume density has a strong cooling effect on the three cities; When the coverage rate is 20%—40%, the average building height significantly reduces the surface temperature of the three cities. When the coverage rate is 40%—60%, the sky visible factor has a certain warming effect on the three cities, when the coverage rate is greater than 60%, the average building height greatly reduces the surface temperature of Jinan. (3) The average surface temperature of low-rise buildings in Xi 'an, Jinan and Zhengzhou is 9.5 ℃, 7.7 ℃ and 6.1 ℃, respectively. The surface temperature of the three cities shows a downward trend from low-rise to high-rise, and the surface temperature of Xi 'an is higher than that of Zhengzhou and Jinan in each gradient. The research shows that rational planning of urban building form is beneficial to alleviate the phenomenon of high surface temperature in central cities.

Key words:  Land surface temperature      Urban form      Building indicators      Urbanization      Spatial distribution     
Received:  14 September 2021      Published:  15 February 2023
ZTFLH:  TP79  
Corresponding Authors:  Liang Zhou     E-mail:  tanleiqi888@163.com;zhougeo@126.com
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Leiqi Tan
Liang Zhou
Li Li
Bo Yuan
Fengning Hu

Cite this article: 

Leiqi Tan,Liang Zhou,Li Li,Bo Yuan,Fengning Hu. Influence of Urban Buildings Forms on Land Surface Temperature: From a Gradient Perspective. Remote Sensing Technology and Application, 2022, 37(6): 1492-1503.

URL: 

http://www.rsta.ac.cn/EN/10.11873/j.issn.1004-0323.2022.6.1492     OR     http://www.rsta.ac.cn/EN/Y2022/V37/I6/1492

Fig.1  The Study Area
Fig.2  Spatial distribution of land surface temperature in summer and winter in Xi ‘an, Zhengzhou and Jinan
Fig.3  Contribution degree of building index to surface temperature in Winter and summer in Xi ‘an, Zhengzhou and Jinan
指标计算公式描述
平均建筑高度(AH)AH=i=1nHi/n表示楼房平均高度,Hi 代表分析单元内第i个建筑高度,n代表分析单元内建筑个数
建筑覆盖率(BCR)BCR=i=1nSi/SAU×100%表示水平方向建筑的密集程度,Si 代表第i个建筑的基地面积,SAU 代表分析单元面积
建筑容积率(FAR)FAR=i=1nSiFi/SAU表示单位面积上的建筑容量,Si 代表第i个建筑基地面积,Fi 代表建筑楼层数,SAU 代表分析单元面积
平均建筑体积(AV)AV=i=1nVi/n表示平均建筑体积,Vi 代表分析单元内第i个建筑的体积,n代表建筑个数
建筑体积密度(BVD)BVD=i=1nVi/SAU表示一定区域内建筑密度指数,Vi 代表第i个建筑体积,n代表建筑个数,SAU 代表分析单元面积
天空可视因子(SVF)在RStudio中利用horizon和raster模块进行计算表示测量天空在给定点的周围环境遮挡程度,值在0-1之间
Table 1  Building morphology parameters and description
Fig.4  Relationship between landscape index and land surface temperature under BCR gradient grade
Fig.5  Characteristics of surface temperature distribution under gradient grade of average building height
1 Feng R, Wang F, Zhou M, et al. Spatiotemporal effects of urban ecological land transitions to thermal environment change in mega-urban agglomeration[J]. Science of The Total Environment,2022:156158. DOI: .
doi: 10.1016/j.scitotenv.2022. 156158
2 Wang Meiya, Xu Hanqiu. Study on the random forest regression model of land cover and thermal environment in megacities[J]. Remote Sensing Technology and Application, 2022, 37(2): 379-388.
2 王美雅, 徐涵秋. 超大城市土地覆盖与热环境的随机森林回归模型研究[J]. 遥感技术与应用, 2022, 37(2): 379-388.
3 Lin J Y, He X Y, Lu S Y, et al. Investigating the influence of three-dimensional building configuration on urban pluvial flooding using random forest algorithm [J]. Environmental Research,2021,196:110438. DOI: .
doi: 10.1016/j.envres. 2020. 110438
4 Xu Y, Ren C, Ma P F, et al. Urban morphology detection and computation for urban climate research [J]. Landscape and Urban Planning, 2017, 167: 212-224. DOI: .
doi: 10.1016/j.landurbplan.2017.06.018
5 Yang Jun, Guo Andong, Xi Jianchao, et al. Spatial-temporal differentiation of three-dimensional urban landscape pattern: A case study of Zhongshan District in Dalian[J]. Acta Geographica Sinica, 2017, 72(4): 646-656.
5 杨俊, 国安东, 席建超, 等. 城市三维景观格局时空分异特征研究——以大连市中山区为例[J]. 地理学报, 2017, 72(4): 646-656.
6 Li Yao, Pan JingHu, Luo Jing. Urban heat environment and surface energy balance analysis of Xi 'an based on LDCM remote sensing[J]. Remote Sensing Technology and Application, 2015,30(5):868-875.
6 李瑶, 潘竟虎, 罗晶. 基于Landsat 8影像和能量平衡的西安市热场格局研究[J]. 遥感技术与应用, 2015, 30(5): 868-875.
7 Lu Y P, Yue W Z, Liu Y, et al. Investigating the spatiotemporal non-stationary relationships between urban spatial form and land surface temperature: A case study of Wuhan, China [J]. Sustainable Cities and Society, 2021, 72: 103070. DOI: .
doi: 10.1016/j.scs.2021.103070
8 Feng Zhangxian, Wang Shijun, Jin Shanhe, et al. Effects of urban morphology and wind conditions on land surface temperature in Changchun[J]. Acta Geographica Sinica, 2019, 74(5): 902-911.
8 冯章献, 王士君, 金珊合, 等. 长春市城市形态及风环境对地表温度的影响[J]. 地理学报, 2019, 74(5): 902-911.
9 Li Chao, Li Xuemei, Tian Yalin, et al. Time and space fusion model comparison of temperature vegetation drought index[J]. Remote Sensing Technology and Application, 2020,35(4):832-844.
9 李超, 李雪梅, 田亚林, 等. 温度植被干旱指数时空融合模型对比[J]. 遥感技术与应用, 2020, 35(4): 832-844.
10 Lu Dadao, Sun Dongqi. Development and management tasks of the Yellow River Basin: A preliminary understanding and suggestion[J]. Acta Geographica Sinica, 2019, 74(12): 2431-2436.
10 陆大道, 孙东琪. 黄河流域的综合治理与可持续发展[J]. 地理学报, 2019, 74(12): 2431-2436.
11 Kong F, Chen J, Middel A, et al. Impact of 3-D urban landscape patterns on the outdoor thermal environment: A modelling study with SOLWEIG[J]. Computers, Environment and Urban Systems, 2022, 94: 101773. DOI: .
doi: 10.1016/j.compenvurbsys.2022.101773
12 Yuan B, Zhou L, Dang X W, et al. Separate and combined effects of 3D building features and urban green space on land surface temperature[J]. Journal of Environmental Management, 2021, 295: 113116. DOI: .
doi: 10.1016/j.jenvman.2021.113116
13 Wang Cuiping, Wang Haowei, Zheng Yuanmao. Evaluation and optimization of three-dimensional spatial distribution for urban complex: A case study on the coastal zone of Xiamen Island[J]. Acta Ecologica Sinica, 2020, 40(22): 8119-8129.
13 王翠平, 王豪伟, 郑渊茂. 城市建筑群三维空间布局评价与优化——以厦门岛滨海地带为例[J]. 生态学报, 2020, 40(22): 8119-8129.
14 Liu Y P, Chen C, Li J J, et al. Characterizing three dimensional (3-D) morphology of residential buildings by landscape metrics[J]. Landscape Ecology, 2020, 35: 2587-2599. DOI: .
doi: 10.1007/s10980-020-01084-8
15 Song J C, Chen W, Zhang J J, et al. Effects of building density on land surface temperature in China: Spatial patterns and determinants[J]. Landscape and Urban Planning, 2020, 198: 103794. DOI: .
doi: 10.1016/j.landurbplan.2020.103794
16 Estoque R C, Murayama Y, Myint S W. Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia[J]. Science of the Total Environment, 2017, 577: 349-359. DOI: .
doi: 10.1016/j.scitotenv.2016.10.195
17 Zhu Z Z, Zhou D, Wang Y P, et al. Assessment of urban surface and canopy cooling strategies in high-rise residential communities[J]. Journal of Cleaner Production, 2021, 288: 125599. DOI: .
doi: 10.1016/j.jclepro.2020.125599
18 Shen Zhongjian, Zeng Jian. Spatial relationship of urban development to land surface temperature in three cities of southern Fujian[J]. Acta Geographica Sinica, 2021,76(3): 566-583.
18 沈中健, 曾坚. 闽南三市城镇发展与地表温度的空间关系[J]. 地理学报, 2021, 76(3): 566-583.
19 Liu X, Zhou Y Y, Yue W Z, et al. Spatiotemporal patterns of summer urban heat island in Beijing, China using an improved land surface temperature[J]. Journal of Cleaner Production, 2020, 257: 120529. DOI: .
doi: 10.1016/j.jclepro.2020.120529
20 Xu X C, Ou J P, Liu P H, et al. Investigating the impacts of three-dimensional spatial structures on CO2 emissions at the urban scale[J]. Science of the Total Environment, 2021, 762: 143096. DOI: .
doi: 10.1016/j.scitotenv.2020.143096
21 Li Yongkang, Wang Xinjun, Ma Yanfei, et al. Downscaling land surface temperature through AMSR-2 observations by using machine learning algorithms[J]. Remote Sensing Technology and Application, 2022, 37(2): 474-487.
21 李永康, 王新军, 马燕飞, 等. 基于机器学习算法的AMSR-2地表温度降尺度研究[J]. 遥感技术与应用, 2022, 37(2): 474-487.
22 Li Da, Lin Longzhen, Lin Zhen, et al. EKC test of ecological protection and high-quality development in the Yellow River Basin[J]. Acta Ecologica Sinica, 2021, 41(10): 3965-3974.
22 李达, 林龙圳, 林震, 等. 黄河流域生态保护和高质量发展的EKC检验[J]. 生态学报, 2021, 41(10): 3965-3974.
23 Wang Penglong, Gao Feng, Huang Chunlin, et al. Progresson sustainable city assessment index system for SDGs[J]. Remote Sensing Technology and Application,2018,33(5): 784-792.
23 王鹏龙, 高峰, 黄春林, 等. 面向SDGs的城市可持续发展评价指标体系进展研究[J]. 遥感技术与应用, 2018, 33(5): 784-792.
24 Lu Yang, Yang Jiansi, Huang Xin,et al. Assessing the effects of urban morphology on Land Surface Temperature in local Climate Zones[J]. Geomatics and Information Science of Wuhan University,2021,46(9)1412-1422.
24 卢阳, 杨建思, 黄昕, 等. 面向局部气候带的城市形态对地表温度的影响分析[J]. 武汉大学学报(信息科学版),2021,46(9)1412-1422.
25 Huang X, Wang Y. Investigating the effects of 3D urban morphology on the surface urban heat island effect in urban functional zones by using high-resolution remote sensing data: A case study of Wuhan, Central China[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 152: 119-131. DOI: .
doi: 10.1016/j.isprsjprs.2019.04.010
26 Yang J, Wang Y C, Xue B, et al. Contribution of urban ventilation to the thermal environment and urban energy demand: Different climate background perspectives[J]. Science of the Total Environment, 2021, 795: 148791. DOI: .
doi: 10.1016/j.scitotenv.2021.148791
27 Pan Minghui, Lan Siren, Zhu Liying, et al. Influence of landscape pattern types on heat island effect over central Fuzhou City[J]. China Environmental Science, 2020, 40(6): 2635-2646.
27 潘明慧, 兰思仁, 朱里莹, 等. 景观格局类型对热岛效应的影响——以福州市中心城区为例[J]. 中国环境科学, 2020, 40(6): 2635-2646.
28 Jiang Sida, Zhan Wenfeng, Yang Jun,et al. Urban heat island studies based on local climate zones: A systematic overview[J]. Acta Geographica Sinica, 2020, 75(9): 1860-1878.
28 江斯达,占文凤,杨俊,等. 局地气候分区框架下城市热岛时空分异特征研究进展[J].地理学报,2020,75(9):1860-1878.
29 Wang Y N, Yi G H, Zhou X B, et al. Spatial distribution and influencing factors on urban land surface temperature of twelve megacities in China from 2000 to 2017[J]. Ecological Indicators,2021,125:107533. DOI: .
doi: 10.1016/j.ecolind.2021.107533
30 Tran H, Uchihama D, Ochi S, et al. Assessment with satellite data of the urban heat island effects in Asian mega cities[J]. International Journal of Applied Earth Observation and Geoinformation,2006,8:34-48. DOI: .
doi: 10.1016/j.jag. 2005. 05.003
31 Chen X, Zhang Y P. Impacts of urban surface characteristics on spatiotemporal pattern of land surface temperature in Kunming of China[J]. Sustainable Cities and Society, 2017, 32: 87-99. DOI: .
doi: 10.1016/j.scs.2017.03.013
32 Zhang X M, Estoque R C, Murayama Y. An urban heat island study in Nanchang City, China based on land surface temperature and social-ecological variables[J]. Sustainable Cities and Society, 2017, 32: 557-568. DOI: .
doi: 10.1016/j.scs. 2017. 05.005
33 Hou L, Yue W Z, Liu X. Spatiotemporal patterns and drivers of summer heat island in Beijing-Tianjin-Hebei Urban Agglomeration, China[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 7516-7527. DOI: .
doi: 10.1109/JSTARS.2021.3094559
34 Xiong Ying, Zhang Fang. Thermal environment effects of urban human settlements and influencing factors based on multi-source data: A case study of Changsha city[J]. Acta Geographica Sinica, 2020, 75(11): 2443-2458.
34 熊鹰, 章芳. 基于多源数据的长沙市人居热环境效应及其影响因素分析[J]. 地理学报, 2020, 75(11): 2443-2458.
35 Yao Yonghui, Zhang Baiping, Han Fang. MODIS-based air temperature estimation in the Hengduan Mountains and its spatio-temporal analysis[J]. Acta Geographica Sinica,2011,66(7): 917-927.
35 姚永慧, 张百平, 韩芳. 基于Modis地表温度的横断山区气温估算及其时空规律分析[J]. 地理学报, 2011, 66(7): 917-927.
36 Qiao Zhi, Huang Ningyu, Xu Xinliang, et al. Spatio-temporal pattern and evolution of the urban thermal landscape in metropolitan Beijing between 2003 and 2017[J]. Acta Geographica Sinica, 2019, 74(3): 475-489.
36 乔治, 黄宁钰, 徐新良, 等. 2003—2017年北京市地表热力景观时空分异特征及演变规律[J]. 地理学报, 2019, 74(3): 475-489.
37 Wang X, Du P J, Chen D M, et al. Characterizing urbanization-induced land surface phenology change from time-series remotely sensed images at fine spatio-temporal scale: A case study in Nanjing, China (2001—2018)[J]. Journal of Cleaner Production,2020,274:122487. DOI: .
doi: 10.1016/j.jclepro.2020. 122487
38 Cao Q, Luan Q Z, Liu Y P, et al. The effects of 2D and 3D building morphology on urban environments: A multi-scale analysis in the Beijing metropolitan region[J]. Building and Environment,2021,192: 107635. DOI: .
doi: 10.1016/j.buildenv. 2021.107635
39 Liu Y X, Peng J, Wang Y L. Efficiency of landscape metrics characterizing urban land surface temperature[J]. Landscape and Urban Planning, 2018, 180: 36-53. DOI: .
doi: 10.1016/j.landurbplan.2018.08.006
40 Sun F Y, Liu M, Wang Y C, et al. The effects of 3D architectural patterns on the urban surface temperature at a neighborhood scale: Relative contributions and marginal effects[J]. Journal of Cleaner Production, 2020, 258: 120706. DOI: .
doi: 10.1016/j.jclepro.2020.120706
41 Chen J K, Zhan W F, Jin S G, et al. Separate and combined impacts of building and tree on urban thermal environment from two-and three-dimensional perspectives[J]. Building and Environment, 2021, 194: 107650. DOI: .
doi: 10.1016/j.buildenv.2021.107650
42 Yang J, Yang Y X, Sun D Q, et al. Influence of urban morphological characteristics on thermal environment[J]. Sustainable Cities and Society, 2021, 72: 103045. DOI: .
doi: 10.1016/j.scs.2021.103045
43 Alexander C. Influence of the proportion, height and proximity of vegetation and buildings on urban land surface temperature[J]. International Journal of Applied Earth Observations and Geoinformation, 2021, 95: 102265. DOI: .
doi: 10.1016/j.jag.2020.102265
44 Guo J M, Han G F, Xie Y S, et al. Exploring the relationships between urban spatial form factors and land surface temperature in mountainous area: A case study in Chongqing city, China[J]. Sustainable Cities and Society, 2020, 61: 102286. DOI: .
doi: 10.1016/j.scs.2020.102286
45 Jiménez-Muñoz J C, Sobrino J A, Mattar C,et al.Atmospheric correction of optical imagery from MODIS and Reanalysis atmospheric products[J]. Remote Sensing of Environment,2010,114(10):2195-2210. DOI: .
doi: 10.1016/j.rse.2010.04.022
46 Barsi J A, Barker J L, Schott J R. An atmospheric correction parameter calculator for a single thermal band earth-sensing instrument[J]. International Geoscience and Remote Sensing Symposium,2003,5:3014-3016. DOI: .
doi: 10.1109/IGARSS. 2003.1294665
47 Yao L, Li T, Xu M X, et al. How the landscape features of urban green space impact seasonal land surface temperatures at a city-block-scale: An urban heat island study in Beijing, China[J]. Urban Forestry & Urban Greening, 2020, 52: 126704. DOI: .
doi: 10.1016/j.ufug.2020.126704
48 Wu C Y, Li J X, Wang C F, et al. Understanding the relationship between urban blue infrastructure and land surface temperature[J]. Science of the Total Environment, 2019, 694: 133742. DOI: .
doi: 10.1016/j.scitotenv.2019.133742
49 Yang J, Wang Y C, Xiu C L, et al. Optimizing local climate zones to mitigate urban heat island effect in human settlements[J]. Journal of Cleaner Production, 2020, 275: 123767. DOI: .
doi: 10.1016/j.jclepro.2020.123767
50 Hu D, Meng Q, Schlink U, et al. How do urban morphological blocks shape spatial patterns of land surface temperature over different seasons? A multifactorial driving analysis of Beijing, China[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 106: 102648. DOI: .
doi: 10.1016/j.jag.2021.102648
No Suggested Reading articles found!