Please wait a minute...
img

Wechat

Remote Sensing Technology and Application  2008, Vol. 23 Issue (1): 17-23    DOI: 10.11873/j.issn.1004-0323.2008.1.17
article     
Classification Application of QuickBird Imagery to Obtain Crop Planting Area
XU Xin-gang1,2,LI Qiang-zi1,ZHOU Wan-cun3,WU Bing-fang1
(1.Institute of Remote Sensing Applications,Chinese Academy of Sciences, Beijing100101, China;
2. NationalEngineering Research Center for Information Technology in Agriculture, Beijing100097, China;
3. Instituteof Mountain Hazards and Environment, ChineseAcademy of Sciences, Chengdu610041, China)
Download:  PDF (1577KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

With complicated natural conditions, multiplicity of crop structure, small and dispersive distribution of parcel, the accuracy of images with moderate and lower resolution can't meet the acquisition of crop yield forecasting. With improvement of new sensors of high resolution, remote sensing imagery of high resolution can provide more abundant information such as texture, hue and so on. However, the current object-oriented classification approaches are not mature, which have too much thresholds to be set and more complicated and difficult to be used commonly. Therefore, combining QuickBird high spatial resolution satellite imagery with the field investigation data as mainly auxiliary information as well as using the pixel-oriented maximum likelihood method, crop planting area was obtained step by step, applying the principle of multi-scale information extraction,a test was set in Mianyang, Sichuan province.The result shows that the accuracy of crop classification is fairly exciting.

Key words:  Crop classification      QuickBird      Field investigation      Maximum likelihood method      Multi-scale     
Received:  22 January 2007      Published:  24 October 2011
TP 79   
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors

Cite this article: 

XU Xin-gang,LI Qiang-zi,ZHOU Wan-cun,WU Bing-fang. Classification Application of QuickBird Imagery to Obtain Crop Planting Area. Remote Sensing Technology and Application, 2008, 23(1): 17-23.

URL: 

http://www.rsta.ac.cn/EN/10.11873/j.issn.1004-0323.2008.1.17     OR     http://www.rsta.ac.cn/EN/Y2008/V23/I1/17

[1] Anne H,Anil K.A Marlkov Random Field Model for Classification of Multisource Satellite Imagery [J]. IEEE Transactions on Geoscience and Remote Sensing,1996,34(1):100-113.
[2] Pax-Lenney M, Woodcock C E. The Effect of Spatial Resolution on the Ability to Monitor the Status of Agricultural Lands  [J].Remote Sensing of Environment,1997,61(2):210-220.
[3] Uchida H. Discrimination of Agricultural Land Use Using Multi-temporal NDVI Data [A]. Proceedings of the 22nd Asian Conference on Remote Sensing [C].2001,2:813-818,Singapore.
[4] Turner M D,Congalton R G.Classification of Multi-temporal SPOT-XS Satellite Data for Mapping Rice Fields on a West African Floodplain[J].Int.J.Remote Sensing,1998,19(1),21-41.
[5] Okamoto K,Kawashima H.Estimation of Rice-land Planted Area in the Tropical Zone Using a Combination of Optical and Microwave Satellite Sensor Data [J].International Journal of Remote Sensing,1999,20(5):1045-1048.
[6] McNairn H,Ellis J,Van Der Sanden J J,etal. Providing Crop Information Using RADARSAT-1 and Satellite Optical Imagery [J].Int.J.Remote Sensing,2002,23(5):851-870.
[7] Wu B F.Operational Remote Sensing Methods for Agricultural Statistics  [J].Acta Geographica Sinica,2000,55(1):25-35.[吴炳方.全国农情监测与估产的运行化遥感方法[J].地理学报,2000,55(1):23-35.]
[8] Jiang D,Wang N B,Yang X H.Study on Forecasting of Crop Yield Using Satellite Remote Sensing in China  [J]. Ziran Zazhi,1999,21(6):351-355.[江东,王乃斌,杨小唤.我国粮食作物卫星遥感估产的研究[J].自然杂志,1999,21(6):351-355.]
[9] Yang B X.Characteristics and Main Specifications of IKONOS and QuckBird 2 Satellite Camera———Some Points for Developing Such Like Satellite Camera [J].Spacecraft Recover &Remote Sensing,2002,12:14-16.[杨秉新.美国IKONOS和QuickBird 2卫星相机的主要性能和特点分析及看法[J].航天返回与遥感,2002,23(4):14-16.]
[10] Zhu G L.Study on the Progress and Application of High Resolution Remote Sensing Technology [J].Geo-information Science,2004,6(3):108-110.[朱光良.IKONOS等高分辨率遥感技术的发展与应用分析[J].地球信息科学,2004,6(3):108-110.]
[11] Wu B F,Xu W B,Sun M,et.al. QuickBird Imagery for Crop Pattern Mapping [J].Journal of Remote Sensing,2004,8(6):688-695.[吴炳方,许文波,孙明,等.高精度作物分布图制作[J].遥感学报,2004,8(6):688-695.]
[12] Sun D F,Yang J H,Liu S X.Application of High Spatial Remote Sensing Images in Land Use Classification and Change Monitoring [J].Transactions of the CSAE, 2002,18(2):160-164.[孙丹峰,杨冀红,刘顺喜.高分辨率遥感卫星影像在土地利用分类及其变化监测的应用研究[J].农业工程学报,2002,18(2):160-164.]
[13] Liu L,Steve M.Moonlet and International Disaster Monitoring Constellation [J].Aerospace China, 2004,(6):18-21.[刘路,史蒂芬·麦京.小卫星与国际灾害监测星座[J].中国航天,2004,(6):18-21.]
[14] Xie P L,Guan Z Q,Li D R.Small Satellite and Chinese Small Satellite Plan [J/OL].Sicencepaper Online, http://www.paper.edu.cn.[谢佩玲,关泽群,李德仁.小卫星及中国的小卫星计划[J/OL].中国科技论文在线,http://www.paper.edu.cn.]
[15] Zhao J J,Yin J Y,Shan X J.Segmentation of High-resolution Remote Sensing Image Based on Shape Feature [J].Bulletin of Surveying and Mapping,2005,1:10-13.[赵俊娟,尹京苑,单新建.基于形状特征的高分辨率遥感影像目标分割[J].测绘通报,2005,1:10-13.]
[16] Zhu C Q,Wang Y G,Ma Q H,et al. Road Extraction from High-resolution Remotely Sensed Image Based on Morphological Segmentation[J]. Acta Geodaetica et Cartographica Sinica,2004, 33(4):347-351.[朱长青,王耀革,马秋禾,等.基于形态分割的高分辨率遥感影像道路提取[J].测绘学报,2004,33(4):347-351.]
[17] Ming D P,Luo J C,Zhou C H,et al.Information Extraction from High Resolution Remote Sensing Image and Parcel Unit Extraction Based Features[J].Journal of Data Acquisition &Processing,2005,20(1):34-39. [明冬萍,骆剑承,周成虎,等.高分辨率遥感影像信息提取及块状基元特征提取[J].数据采集与处理,2005,20(1):34-39.]
[18] Han T.Some Research Advances and Methods on Detecting Land Cover Change by Remote Sensing [J].Arid Meteorology,2004,22(2):76-81.[韩涛.遥感监测土地覆盖变化的方法及研究进展[J].干旱气象,2004,22(2):76-81.]
[19] Yang P,Tang H J,Liu J.Progress and Outlook in Automatic Classification Method for Crop Yield Estimation Using Remote Sensing Data [J]. Journal of China Agricultural Resources and Regional Planning,2000,21(6):57-60.[杨鹏,唐华俊,刘佳.作物遥感估产中自动分类方法研究进展与展望[J].中国农业资源与区划,2000,21(6):57-60.]
[20] Wu B F.China Crop Watch System with Remote Sensing [J].Journal of Remote Sensing,2004,8(6):481-497.[吴炳方.中国农情遥感速报系统[J].遥感学报,2004,8(6):481-497.]
[21] Liao W F,Xiao J H,Feng Z M,et al.Research on Technologies of Land Classification Based on Multi-source Remote Sensing Data Fusion[J].Bimonthly of Xinjiang Meteorology,2004,27(4):22-24.[廖文峰,肖继华,冯志敏,等.基于数据融合的土地遥感分类在技术研究[J].新疆气象,2004,27(4):22-24.]

No Suggested Reading articles found!