Please wait a minute...
img

Wechat

Remote Sensing Technology and Application  2010, Vol. 25 Issue (2): 303-309    DOI: 10.11873/j.issn.1004-0323.2010.2.303
article     
Review on Methods for SNR Estimation of Optical Remote Sensing Imagery
ZHU Bo1,2,3,WANG Xin-hong2,TANG Ling-lli2,LI Chuan-rong2
1.Center for Earth Observation and Digital Earth,Chinese Academy of Sciences,Beijing 100190,China;
2.Academy of Opto-Electronics,Chinese Academy of Sciences,Beijing 100190,China;
3.Graduate University of Chinese Academy of Sciences,Beijing 100049,China
Download:  PDF (794KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The signal-to-noise ratio (SNR) is one of the most important indices which can be used to evaluate the data quality obtained by a remote sensor.To a great extent,the SNR of an image reflects the SNR of the remote sensor.Several typical methods to estimate the SNR of optical remote sensing imagery are summarized in this paper,and their merit and restrictions are presented.And this paper also performs the comparison and analysis between these methods based on their own principles,from six aspects including the automatic computation,the computing time,the stability,the applicability,the suitable sensor category,and the uniformity of estimating areas.In addition,the paper points out that the comparison and analysis between methods in various specific applications should be done in the future.The study will help to choose a reasonable SNR estimating method aiming at different remote sensors and different types of remote sensing images.

Key words:  Optical remote sensing imagery      Signal-to-noise ratio(SNR)      Noise estimation     
Received:  02 December 2009      Published:  19 October 2010
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
ZHU Bo
WANG Xin-hong
TANG Ling-li
LI Chuan-rong

Cite this article: 

ZHU Bo, WANG Xin-hong, TANG Ling-li, LI Chuan-rong. Review on Methods for SNR Estimation of Optical Remote Sensing Imagery. Remote Sensing Technology and Application, 2010, 25(2): 303-309.

URL: 

http://www.rsta.ac.cn/EN/10.11873/j.issn.1004-0323.2010.2.303     OR     http://www.rsta.ac.cn/EN/Y2010/V25/I2/303

[1]Chen Zhengchao.A Research on the Technology of On-orbit Calibration and Validation of China DMC Micro-satellite[D].Institute of Remote Sensing Applications Chinese Academy of Sciences,2005.[陈正超.中国DMC小卫星在轨测试技术研究[D].中国科学院遥感应用研究所,2005.]
[2]Curran P J,Dungan J L.Estimation of Signal-to-noise:A New Procedure Applied to AVIRIS DATA[J].IEEE Transactions on Geoscience and Remote Sensing,1989,27(5):620-628.
[3]Lee J L,Hoppel K.Noise Modelling and Estimation of Remotely Sensed Images[C]//IGARSS′89,12th Canadian Sympo-sium on Remote Sensing.Vancouver,Canada,1989,(2):1005-1008.
[4]Delvit J M,Leger D,Roques S,et al.Signal to Noise Assessment from Non Specific Views[J].SPIE,2001,4541:370-381.
[5]Corner B R.Noise Estimation in Remote Sensing Imagery Using Data Masking[J].International Journal of Remote Sensing,2003,24(4):689-702.
[6]Freek D,Van D M,Steven M D.Imaging Spectrometry:Based Principles and Prospective Applications[J].Netherlands:Kluwer Academic Publishers,2001.
[7]Liu Jiangui,Zheng Lanfen,Tong Qingxi.Estimation of Signal to Noise Ratio of Remote Sensing Images[J].Journal of Basic Science and Engineering,1999,7(4):361.[刘建贵,郑兰芬,童庆禧.遥感图像信噪比的估算[J].应用基础与工程科学学报,1999,7(4):361.]
[8]Eklundh L R.Noise Estimation in NOAA AVHRR Maximum-value Composite NDVI Images[J].International Journal of Remote Sensing,1995,16(15):2955-2962.
[9]Chappell A,Seaquist J W,Eklundh.Improving the Estimation of Noise from NOAA AVHRR NDVI for Africa Using Geo-statistics[J].International Journal of Remote Sensing,2001,22(6):1067-1080.
[10]Curran P J.The Semivariogram in Remote Sensing:An Introduction[J].Remote Sensing of Environment,1988,24:493-507.
[11]Gao Bocai.An Operational Method for Estimating Signal to Noise Ratios from Data Acquired with Imaging Spectrometers[J].Remote Sensing of Environment,1993,43:23-33.
[12]Ran Qiong,Chi Yaobin,Wang Zhiyong,et al.Image-based Noise Estimation of Beijing-1 Small Satellite[J].Journal of Remote Sensing,2009,13(3):554-558.[冉琼,迟耀斌,王智勇,等.北京1号小卫星图像噪声评估[J].遥感学报,2009,13(3):554-558.]
[13]Gao Lianru,Zhang Bing,Zhang Xia,et al.Study on the Method for Estimating the Noise in Remote Sensing Images Based on Local Standard Deviations[J].Journal of Remote Sensing,2007,11(2):203-208.[高连如,张兵,张霞.基于局部标准差的遥感图像噪声评估方法研究[J].遥感学报,2007,11(2):203-208.]
[14]Roger R E,Arnold J F.Reliably Estimating the Noise in AVIRIS Hyperspectral Images[J].International Journal of Remote Sensing,1996,17(10):1951-1962.
[15]Jiang Qingsong,Wang Jianyu.Study on Signal-to-noise Ratio Estimation and Compression Method of Operational Modular Imaging Spectrometer Multi-spectral Images[J].Acta Optica Sinica,2003,23(11):1335-1340.[蒋青松,王建宇.实用型模块化成像光谱仪多光谱图像的信噪比估算及压缩方法研究[J].光学学报,2003,23(11):1335-1340.]
[16]Kettig R L,Landgrebe D A.Classification of Multispectral Image Data by Extraction and Classification of Homogeneous Objects[J].IEEE Trans.Geosci.Electron.1976,14(1):19-26.
[17]Geng X R,Zhang X,Chen Z C,et al.Classification Algorithm Based on Spatial Continuity for Hyperspectral Image[J].Infrared Millim Waves,2004,23(4):299-302.
[18]Gao Lianru,Zhang Bing,Zhang Xia,et al.A New Operational Method for Estimating Noise in Hyperspectral Images[J].IEEE Geoscience and Remote Sensing Letters,2008,5(1):83-87.
[19]Chang C I,Sun T L,Althouse M L G.An Unsupervised Interference Rejection Approach to Target Detection and Classification for Hyperspectral Imagery[J].Opt.Eng,1998,37(3):735-743.
[20]Chang C I,Brumbley C.An Orthogonalization Target Signature Space Projection Approach to Image Classification in Unknown Background[C]//In Proc.31st Conf.Inf.Sci.Sys,1997:174-178.
[21]Chang C I,Du Q.Interference and Noise-adjusted Principal Components Analysis[J].IEEE Trans.on Geosci.and Remote Sens.,1999,37(5):2387-2396.
[22]Li Hongzhuang,Tian Yuan,Han Changyuan,et al.Assessment of Signal-to-noise Ratio of Space Optical Remote Sensor Using Artificial Neural Network[J].Opto-electronic Enginering,2006,33(4):44-49.[李宏壮,田园,韩昌元,等.航天光学遥感器信噪比的人工神经网络评价[J].光电工程,2006,33(4):44-49.]
[23]Liu Yaxia.Research on the Calibration Technique of the TDI CCD Remote Sensing Camera[D].Changchun:Institute of Optics,Fine Mechanics and Physics,the Chinese Academy of Sciences,2004.[刘亚侠.TDI CCD遥感相机标定技术的研究[D].中国科学院长春光学精密机械与物理研究所,2004.]
[24]Tang Hairong.A Noise Analysis Method to Evaluate Image Quality of Optical Satellites[J].Journal of Electronics & Information Technology,2004,26(3):370-374.[唐海蓉.一种评价光学卫星辐射特性及图像质量的噪声分析方法[J].电子与信息学报,2004,26(3):370-374.]
[25]Gu Songyan.The Analysis of Noise Level about VIS Channels on Spin Span Radiometer of FY2 Meteorology Satellite[J].Meteorological Monthly,1998,24(8):26-28.[谷松岩.风云二号可见光通道噪声分析[J].气象,1998,24(8):26-28.]
[26]Donald W H,Thomas H V H.Estimating Noise Levels of Remotely Sensed Measurements from Satellites Using Spatial Structure Analysis[J].J.Atmos.Ocean Tech,1988,(5):206-214.
[27]Zhao Ruixia,Li Wei,Wang Yubin.The Application of Spatial Structure Functions to the Design of Weather Station Networks in Beijing Area[J].Quarterly Journal of Applied Meteorology,2007,18(1):94-101.[赵瑞霞,李伟,王玉彬.空间结构函数在北京地区气象观测站网设计中的应用[J].应用气象学报,2007,18(1):94-101.]
[28]Zheng Xuefen,Lin Zongjian,Fan Li,et al.Research on Methods for Computing the Volume of Information of Remote Sensing Image[D].Journal of Shandong Univ. of Sci. and Technol.:Nat. Sci.,2008,27(1):80-83.[郑学芬,林宗坚,范丽,等.遥感影像信息量的计算方法研究[D].山东科技大学学报(自然科学版),2008,27(1):80-83.]
[29]Aiazzi B,Barducci A,Baronti S,et al.Evaluation of Quality and Information Content of CHRIS Hyper-Spectral Images[C]//Proceedings 5th EARSeL Workshop on Imaging Spectroscopy.Bruges,Belgium,April 23-25 2007.
[30]Canny J.A Computational Approach to Edge Detect[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,1986,8(6):679-698.
[31]Jin Shengye,Chen Shengbo,Jin Lihua,et al.The Using of Differential Algorithm in Remote Sensing Image Edge Extraction[J].Remote Sensing Technology and Application,2008,23(6):729-734.[金晟业,陈圣波,金丽华.遥感图像边缘提取微分方法及其应用[J].遥感技术与应用,2008,23(6):729-734.]

 

No Suggested Reading articles found!