1 |
Li Yonghui, Wang Yang, Yi Qinghuan,et al. The study on air quality change of Nanchang city from 2004 to 2015 years based on satellite remote sensing MODIS data[J]. Journal of Jiangxi Normal University(Natural Science Edition),2019,43(2):214-220.
|
1 |
李永辉,汪洋,易清传,等. 基于卫星遥感MODIS数据反演南昌市2004—2015年空气质量变化研究[J]. 江西师范大学学报(自然科学版),2019,43(2):214-220.
|
2 |
Kira M, Kyung Min N, Selin Noelle E,et al. Health damages from air pollution in China[J]. Global Environ-mental Change,2012,22(1):55-66.DOI: .
doi: 10.1016/j.gloenvcha. 2011. 08.006
|
3 |
Zhu Jia, Liao Hong,et al. Meteorological influences on PM2.5 and O3 trends and associated health burden since China's clean air actions[J]. Science of the Total Environment, 2020, 744 : 140837.doi: .
doi: 10.1016/j.scitotenv.2020.140837
|
4 |
Chen Yun, Chen Renjie, Chen Yue,et al. The prospective effects of long-term expo-sure to ambient PM2.5 and constituents on mortality in ru-ral East China[J]. Chemosphere,2021,280:130740-130740.doi: .
doi: 10.1016/J.CHEMOSPHERE. 2021. 130740
|
5 |
Chudnovsky A, Tang C, Lyapustin A,et al. A critical assessment of high-resolution aerosol optical depth retrievals for fine particulate matter predictions[J]. Atmospheric Chemistry and Physics,2013,13(21):14581-14611. DOI: .
doi: 10.5194/acp-13-10907-2013
|
6 |
Mordukhovich I, Kloog I, Coull B,et al. Association between particulate air pollution and QT interval duration in an elderly cohort[J]. Epidemiology,2016,27(2):284-290.
|
7 |
Li Zhipeng, Chen Jian. Remote sensing retrieval of atmospheric rine particle PM2.5 based on GOCI satellite and its temporal and spatial distribution[J].Remote Sensing Technology and Application,2020,35(1):163-173.
|
7 |
李志鹏,陈健.基于GOCI卫星的大气细颗粒物PM2.5的遥感反演及其时空分布规律研究[J].遥感技术与应用,2020,35(1):163-173.
|
8 |
Liu Zeyang. Aerosol optical properties study based on ground observation[D].Hefei:University of Science and Technology of China,2020.
|
8 |
刘泽阳. 基于地基观测的气溶胶光学特性研究[D].合肥:中国科学技术大学,2020.
|
9 |
He Aihong, Xin Zhao, Liu Shu,et al. Spatial and temporal distribution of PM2.5 in Pingxiang city[J]. Journal of Pingxiang University,2018,35(6):49-52.
|
9 |
何爱红,辛朝,刘澍,等.萍乡市大气污染PM2.5时空分布规律[J].萍乡学院学报,2018,35(6):49-52.
|
10 |
Shao Qi, Chen Yunhao, Li Jing. Inversion of PM2.5 concentration in Beijing based on satellite remote sensing and meteorological reanalysis data[J]. Geography and GeoInfo-rmation Science,2018,34(3):38-44.
|
10 |
[邵琦,陈云浩,李京.基于卫星遥感和气象再分析资料的北京市PM2.5浓度反演研究[J].地理与地理信息科学,2018,34(3):38-44.
|
11 |
Zhang Wenhao, Zheng Fengjie, Zhang Wenpeng,et al. Es-timating ground-level hourly PM2.5 Concentrations over north China plain with deep neural networks[J]. Journal of the Indian Society of Remote Sensing,2021(9).DOI: .
doi: 10.1007/s12524- 021-01344-3
|
12 |
Wang Jun, Christopher SA. Intercomparison between satellite‐derived aerosol optical thickness and PM2.5 mass: Implications for air quality studies[J]. Geophysical Research Letters,2003,30(21):1-14.DOI: .
doi: 10.1029/2003GL018174
|
13 |
Song W Z, Jia H F, Huang J F,et al. A satelli-tebased geographically weighted regression model for regional PM2.5 estimation over the Pearl River Delta region in China[J]. Remote Sensing of Environment,2014,154:1-7.DOI: .
doi: 10.1016/j.rse. 2014.08.008
|
14 |
Hu X F, Belle Jessica H, Meng X,et al. Estimating PM2.5 concentrations in the conterminous united states using the random forest approach[J]. Environmental science & technology,2017,51(12):6936. DOI: .
doi: 10.1021/acs.est.7b01210
|
15 |
Jia Songlin, Su Lin, Tao Jinhua,et al. A study of multiple regression method for estimating concentration of fine particulate matter using satellite remote sensing[J]. China Environmental Science,2014,34(3):565-573.
|
15 |
贾松林,苏林,陶金花,等.卫星遥感监测近地表细颗粒物多元回归方法研究[J]. 中国环境科学,2014,34(3):565-573.
|
16 |
Shen Yuan, Chen Chaoliang, Qian Jing,et al. High resolution PM2.5 estimation using remote sensing data based on random forest——A case study of Guangdong,China[J].Journal of Integration Technology,2018,7(3):31-41.
|
16 |
申原,陈朝亮,钱静,等.基于随机森林的高分辨率PM2.5遥感反演——以广东省为例[J].集成技术,2018,7(3):31-41.
|
17 |
Liu Yang, Sarnat Jeremy A, Vasu Kilaru,et al. Estimating ground-level PM2.5 in the eastern United States using satellite remote sensing[J]. Environmental science & technology,2005,39(9):3269-3278.DOI: .
doi: 10.1021/es049352m
|
18 |
Zhang Yibo, Chen Xue, Yu Shaocai,et al. City-level air quality improvement in the Beijing-Tianjin-Hebei region from 2016/17 to 2017/18 hea-ting seasons: Attributions and process analysis[J]. Environ-mental Pollution, 2021, 274(prepublish):116523-116523. doi: .
doi: 10.1016/J.ENVPOL.2021.116523
|
19 |
Wei Shimei, Pan Jinghu, Wenliang Tuo. Estimation and spatial-temporal distribution characteristics of PM2.5 concentration by remote sensing in China in 2015[J].Remote Sensing Technology and Application,2020,35(4):845-854.
|
19 |
魏石梅,潘竟虎,妥文亮.2015年中国PM2.5浓度遥感估算与时空分布特征[J].遥感技术与应用,2020,35(4):845-854.
|
20 |
Wang Jie. Spatial and temporal variability of aerosol optical depth in China based on MERRA-2 data[D]. Lanzhou: Northwest Normal University,2020.
|
20 |
王洁. 基于MERRA-2数据的中国气溶胶光学厚度时空变化研究[D]. 兰州:西北师范大学,2020.
|
21 |
Chaplot V, Darboux F, Bourennane H,et al. Accuracy of interpolation techniques for the derivation of digital elevation models in relation to landform types and data density[J]. Geomorphology,2006,77(1-2):126-141.
|
22 |
Wu Zhiming, Li Jiaochao, Wang Rui,et al. Estimation of CDOM concentration in inland lake based on random forest using Sentinel-3A OLCI[J]. Journal of Lake Sciences,2018,30(4):979-991.
|
22 |
吴志明,李建超,王睿,等.基于随机森林的内陆湖泊水体有色可溶性有机物(CDOM)浓度遥感估算[J].湖泊科学,2018,30(4):979-991.
|
23 |
Breiman L. Random forests[J]. Machine Learning,2001,45(1):5-32. DOI: .
doi: 10.1023/A:1010933404324
|
24 |
Ren Cairong, Xie Gang. Prediction of PM2.5 concentration level based on random forest and meteorological parameters[J]. Computer Engineering and Applications,2019,55(2):213-220.
|
24 |
任才溶,谢刚.基于随机森林和气象参数的PM2.5浓度等级预测[J].计算机工程与应用,2019,55(2):213-220.
|
25 |
Lin Haifeng, Xin Jinyuan, Zhang Wenyu,et al. Comparison of atmospheric matter and aeros optical depth in Beijing city[J],Environmental Science,2013,34(3):826-834.
|
25 |
林海峰,辛金元,张文煜,等.北京市近地层颗粒物浓度与气溶胶光学厚度相关性分析研究[J].环境科学,2013,34(3):826-834.
|
26 |
Guo Bin, Zhang Dingming, Pei Lin,et al. Estimating PM2.5 concentrations via random forest method using satellite, auxiliary, and ground-level station dataset at multiple temp-oral scales across China in 2017[J]. Science of the Total Environment,2021,778.DOI: .
doi: 10.1016/J.SCITOTENV.2021.146288
|
27 |
Fang Xinrui, Wen Zhaofei, Chen Gulong,et al. Remote sensing estimation of suspended sediment concentration based on Random Forest Regression Model[J]. Journal of Remote Sensing,23(4):756-772.方馨蕊,温兆飞,陈吉龙,等.随机森林回归模型的悬浮泥沙浓度遥感估算[J].遥感学报,2019,23(4):756-772.
|
28 |
Yang Yingchuan, Ge Baozhu, Hao Saiyu,et al. Inversion of PM2.5 concentration in Beijing based on visibility and AOD data[J]. Climactic and Environmental Research,2020(5):521-530.
|
28 |
杨颖川,葛宝珠,郝赛宇,等. 基于能见度及AOD数据的北京市PM2.5浓度的反演[J]. 气候与环境研究,2020(5):521-530.
|
29 |
Wang Weiqi, Zhang Zengliang, Song Bin,et al. Correlation between averaged PM2.5 concentrations and MODIS aerosol optical depth during different periods in Beijing[J]. Acta Scientiae Circumstantiae,2016,36(8):2794-2802.
|
29 |
王伟齐,臧增亮,宋彬,等.北京地区不同时段平均PM2.5浓度与MODIS气溶胶光学厚度相关性分析[J]. 环境科学学报,2016,36(8):2794-2802.
|