Please wait a minute...
img

Wechat

Remote Sensing Technology and Application  2022, Vol. 37 Issue (4): 938-952    DOI: 10.11873/j.issn.1004-0323.2022.4.0938
    
Radiance Quality Assessment of ZY-1-02D VNIC/AHSI Image Data
Peiyu Sun1,2,3(),Yinghai Ke1,2,3(),Ruofei Zhong1,2,3,Shihu Zhao4,Yao Liu4
1.State Key Laboratory Cultivation Base of Urban Environment Process and Simulation,Beijing 100048,China
2.Beijing Laboratory of Water Resources Security,Beijing 100048,China
3.College of Resource Environment and Tourism,Capital Normal University,Beijing 100048,China
4.Land Satellite Remote Sensing Application Center,MNR,Beijing 100048,China
Download:  HTML  PDF (10700KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

ZY-1-02D is the first civil hyperspectral satellite in China, equipped with Visible Near-Infrared Camera (VNIC) and Advanced Hyperspectral Imager (AHSI). This study evaluates and analyzes the radiance quality of ZY-1-02D VNIC/AHSI data and compares them with Sentinel-2 MSI/GF-5 AHSI data. Four indicators are used to assess image quality: radiance precision, Signal-to-Noise Ratio (SNR), definition, and Shannon entropy. The results indicate that ZY-1-02D VNIC data has the advantages of high radiance and high SNR in visible bands. In red-edge and near-infrared bands, ZY-1-02D VNIC data has the advantages of a large gray range and a large amount of information. The comparison between ZY-1-02D and Sentinel-2 MSI data shows that ZY-1-02D VNIC data has better performance in radiance, gray range, definition, and information content. The performance of the two sensors is similar in terms of SNR. ZY-1-02D AHSI data has great quality in 395~1 314 nm wavelength. However, in 1 929—2 501 nm, some bands have severe noise and poor quality caused by water vapor. The comparison between ZY-1-02D AHSI and GF-5 AHSI data shows that the performance in radiance and SNR of the two sensors are similar. The gray range of ZY-1-02D AHSI data is greater than GF-5 AHSI data in both VNIR and SWIR. The definition and information content of ZY-1-02D AHSI data are better than GF-5 AHSI data in SWIR bands.

Key words:  ZY-1-02D      Image quality assessment      Sentinel-2      GF-5      Hyperspectral data     
Received:  26 July 2021      Published:  28 September 2022
TP75  
Corresponding Authors:  Yinghai Ke     E-mail:  771584826@qq.com;yke@cnu.edu.cn
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Peiyu Sun
Yinghai Ke
Ruofei Zhong
Shihu Zhao
Yao Liu

Cite this article: 

Peiyu Sun,Yinghai Ke,Ruofei Zhong,Shihu Zhao,Yao Liu. Radiance Quality Assessment of ZY-1-02D VNIC/AHSI Image Data. Remote Sensing Technology and Application, 2022, 37(4): 938-952.

URL: 

http://www.rsta.ac.cn/EN/10.11873/j.issn.1004-0323.2022.4.0938     OR     http://www.rsta.ac.cn/EN/Y2022/V37/I4/938

参考文献卫星传感器类型采用指标
[3]资源一号02C多光谱均值、标准差、信息熵、信噪比、清晰度
[4]高分一号多光谱均值、标准差、信噪比、同质性、平均梯度、角二阶矩、信息熵
[5]高分二号多光谱在轨光学调制传递函数、相机辐射一致性、信噪比、清晰度、对比度
[6]高分五号多光谱信噪比、清晰度、信息量、辐射不均一度
[7]资源一号02D多光谱在轨光学调制传递函数、信噪比
[8]EO-1 Hyperion高光谱辐射精度、信息量、清晰度、信噪比
[9]SPARK高光谱辐射精度(均值、方差、辐射不均一度)、信噪比、信息熵、清晰度
[10]高分五号高光谱噪声标准差、清晰度、信息熵
[11]资源一号02D高光谱信噪比、相对辐射定标精度、绝对辐射定标精度
Table 1  Research status of radiance quality assessment of remote sensing images
卫星参数ZY1-02D VNICSentinel-2 MSI
轨道高度/km778786
重访周期/d35
波段范围/nm

全色波段 Pan 450—900

蓝波段 B1 450—520

绿波段 B2 520—600

红波段 B3 630—690

近红外波段 B4 760—900

海岸波段 B5 400—450

黄波段 B6 580—625

红边波段 B7 705—745

近红外2波段 B8 860—1040

海岸波段 B1 433—453

蓝波段 B2 458—523

绿波段 B3 543—578

红波段 B4 650—680

红边波段 B5 698—713

红边波段 B6 733—748

红边波段 B7 773—793

近红外波段 B8 785—900

近红外波段 B8a 853—875

水蒸汽波段 B9 935—955

卷云波段 B10 1360—1390

短波红外波段1 B11 2280

短波红外波段2 B12 2100

空间分辨率

/m

Pan:2.5

B1-B8:10

B2-B4、B8:10

B5-B7、B8a、B11-B12:20

B1、B9-B10:60

幅宽/km115290
量化等级/bit1212
Table 2  Parameters comparison between ZY1-02D VNIC and Sentinel-2 MSI
卫星参数ZY1-02D AHSIGF-5 AHSI
轨道高度/km778705
重访周期/d35
波段范围/nm400—2 500400—2 500
光谱通道数VNIR: 76, SWIR: 90VNIR: 150, SWIR: 180
光谱分辨率/nmVNIR: 10, SWIR: 20VNIR: 5, SWIR: 10
空间分辨率/m3030
幅宽/km6060
量化等级/bit1212
Table 3  Parameters comparison between ZY1-02D AHSI and GF-5 AHSI
Fig.1  True-color display of ZY1-02D VNIC data
影像编号影像获取日期覆盖区域主要土地覆盖类型
图1(a)2020年7月15日北京市城镇、山地、农田、水体
图1(b)2020年5月1日山东省东营市城镇、农田、海岸带、水体
图1(c)2020年3月16日江苏省太湖地区水体、城镇
图1(d)2020年1月9日山东省东营市黄河口地区水体、海岸带湿地
图1(e)2020年1月12日云南省昆明市山地、城镇、水体
图1(f)2020年3月20日云南省昆明市山地、城镇、水体
Table 4  Image information of ZY1-02D VNIC data
Fig.2  True-color display of ZY1-02D AHSI data
影像编号影像获取日期覆盖区域主要土地覆盖类型
图2(a)2020年6月19日北京市城区及西郊城镇、山地
图2(b)2020年7月15日北京市城区及南郊城镇、农田
图2(c)2020年1月13日云南省大理州宾川县山地、城镇
图2(d)2020年4月28日安徽省黄山地区山地
图2(e)2020年4月22日河北省张家口市怀来县山地、城镇、水体
图2(f)2020年5月4日安徽省合肥市城镇、农田、水体
Table 5  Image information of ZY1-02D AHSI data
Fig.3  True-color display of Sentinel-2 MSI and GF-5 AHSI data
Fig.4  Radiance accuracy of ZY1-02D VNIC and Sentinel-2 MSI data
Fig.5  SNR of ZY1-02D VNIC and Sentinel-2 MSI data
Fig.6  Definition of ZY1-02D VNIC and Sentinel-2 MSI data
Fig.7  Shannon entropy of ZY1-02D VNIC and Sentinel-2 MSI data
Fig.8  Radiance accuracy of ZY1-02D AHSI and GF-5 AHSI data
Fig.9  SNR of ZY1-02D AHSI and GF-5 AHSI data
Fig.10  SWIR images of ZY1-02D AHSI data in different SNR interval
Fig.11  Definition of ZY1-02D AHSI and GF-5 AHSI data
Fig.12  Shannon entropy of ZY1-02D AHSI and GF-5 AHSI data
波长均值标准差信噪比清晰度信息熵
ZY1-02DGF-5ZY1-02DGF-5ZY1-02DGF-5ZY1-02DGF-5ZY1-02DGF-5
VNIR最小值12.698.099.142.2631.7030.803.395.513.333.17
390—1 040 nm最大值36.0354.6425.058.6647.2047.1421.5321.424.935.04
平均值26.7025.5919.326.5043.2242.5213.6915.074.544.60
SWIR最小值5.390.714.050.2136.1728.803.990.453.170.44
1 005—1 341 nm最大值20.9619.7615.205.0446.8647.3614.7012.414.414.34
平均值13.6511.8010.013.1142.9542.709.767.693.973.46
SWIR最小值0.510.740.430.2923.9324.260.460.630.540.63
1 425—1 812 nm最大值6.184.625.171.9644.6945.005.944.163.622.99
平均值4.203.243.471.3139.8941.353.912.812.952.34
SWIR最小值0.060.040.060.0212.6010.560.110.080.000.00
1 930—2 501 nm最大值1.461.181.300.6037.3338.591.541.271.971.32
平均值0.840.740.750.3630.2131.940.900.771.120.70
Table 6  Evaluation indices results of ZY1-02D AHSI and GF-5 AHSI data
1 Zhang Hongyu, Han Bo, Wang Xiaohu, et al. System design and technique characteristic of ZY-1-02D satellite[J]. Spacecraft Engineering, 2020, 29(6): 10-18.
1 张宏宇, 韩波, 王啸虎, 等. 资源一号02D卫星总体设计与技术特点[J]. 航天器工程, 2020, 29(6): 10-18.
2 Wei Hongyan, Xiao Chenchao, Song Qingjun, et al. Natural resources typical applications in on-orbit test of ZY-1-02D satellite[J]. Spacecraft Engineering,2020,29(6):148-15.
2 魏红艳, 肖晨超, 宋庆君, 等.资源一号02D卫星在轨测试自然资源典型应用[J]. 航天器工程, 2020, 29(6): 148-154.
3 Huang Yan, Tian Qingjiu, Wei Hongwei, et al. Data quality evaluation and application potential analysis on ZY-1-02C P/MS[J]. Remote Sensing Information, 2013, 28(6): 33-43.
3 黄彦,田庆久,魏宏伟,等. ZY-1-02C卫星P/MS数据质量评价及应用潜力分析[J]. 遥感信息,2013,28(6):33-43.
4 Chen Ming, Zhou Wei, Yuan Tao. GF-1 image quality evaluation and applications potential for the mining area land use classification[J]. Journal of Geomatics Science and Technology, 2015, 32(5): 494-499.
4 陈明, 周伟, 袁涛. “GF-1”影像质量评价及矿区土地利用分类潜力研究[J]. 测绘科学技术学报, 2015, 32(5): 494-499.
5 Xu Wen, Long Xiaoxiang, Li Qingpeng. Radiometric image quality assessment of GF-2 satellite PMS Camera[J]. Spacecraft Recovery & Remote Sensing, 2015, 36(4): 1-9.
5 徐文, 龙小祥, 李庆鹏. “高分二号”卫星相机影像辐射质量评价[J]. 航天返回与遥感, 2015, 36(4): 1-9.
6 Dong Shengyue, Sun Genyun, Du Yongming, et al. Image quality assessment for visual and infrared multis-pectral imager of GF-5[J]. Remote Sensing Technology and Application, 2020, 35(2): 381-388.
6 董胜越, 孙根云, 杜永明, 等. 高分五号全谱段光谱成像仪影像数据质量评价研究[J]. 遥感技术与应用, 2020, 35(2): 381-388.
7 Tan Wei, Qi Wenwen, Wang Jun, et al. On-orbit adjusting and image quality assessment method for VNIR camera of ZY-1-02D satellite[J]. Spacecraft Engineering, 2020, 29(6): 60-66.
7 谭伟, 齐文雯, 王军, 等. 资源一号02D卫星可见近红外相机在轨调试与图像质量评价方法[J]. 航天器工程, 2020, 29(6): 60-66.
8 Zhou Yuji, Tian Qingjiu. Image quality evaluation of EO-1 hyperion sensor[J].Journal of Geo-information Science,2008,10(5): 678-683.
8 周雨霁, 田庆久. EO-1 Hyperion高光谱数据的质量评价[J]. 地球信息科学, 2008, 10(5): 678-683.
9 Wu Xing, Zhang Xia, Sun Xuejian, et al. Radiation quality evaluation of spark hyperspectral satellite image[J]. Remote Sensing Technology and Application, 2018, 33(2): 233-240.
9 吴兴, 张霞, 孙雪剑, 等. SPARK卫星高光谱数据辐射质量评价[J]. 遥感技术与应用, 2018, 33(2): 233-240.
10 Wang Chongchang, Xue Rongrong, Zhao Shihu, et al. Quality evaluation and analysis of GF-5 hyperspectral image data[J]. Geography and Geo-Information Science, 2021, 37(1): 33-38+125.
10 王崇倡, 薛荣荣, 赵世湖. GF-5卫星高光谱影像数据质量评价与分析[J]. 地理与地理信息科学, 2021, 37(1): 33-38+125.
11 Liu Yinnian, Sun Dexin, Liang Jian, et al. Overview of ZY-1-02D satellite AHSI on-orbit performance and stability[J]. Spacecraft Engineering, 2020, 29(6): 93-97.
11 刘银年, 孙德新, 梁建, 等. 资源一号02D卫星高光谱相机在轨性能及稳定性评估[J]. 航天器工程, 2020, 29(6): 93-97.
12 Hong Bo. Study on methods for SNR estimation of hyperspectral remote sensing images[D]. Beijing: University of Chinese Academy of Sciences, 2013.
12 洪波. 高光谱遥感图像信噪比估算方法研究[D]. 北京: 中国科学院大学, 2013.
13 Qin Bangyong. A study on quality evaluation system and methods of hyperspectral remote sensing data[D]. Beijing: University of Chinese Academy of Sciences, 2014.
13 覃帮勇. 高光谱遥感数据质量评价体系及方法研究[D]. 北京: 中国科学院大学,2014.
14 Gao Lianru, Zhang Bing, Zhang Xia, et al. Study on the method for estimating the noise in remote sensing images based on local standard deviations[J]. National Remote Sensing Bulletin, 2007, 11(2): 201-208.
14 高连如, 张兵, 张霞, 等. 基于局部标准差的遥感图像噪声评估方法研究[J]. 遥感学报, 2007, 11(2): 201-208.
15 Roger R E, Arnold J F. Reliably estimating the noise in AVIRIS hyperspectral images[J]. International Journal of Remote Sensing, 1996, 17(10): 1951-1962. DOI: .
doi: 10.1080/01431169608948750
16 Wang Hongnan, Zhong Wen, Wang Jing, et al. Research of measurement for digital image definition[J]. Journal of Image and Graphics, 2004, 9(7): 64-67.
16 王鸿南, 钟文, 汪静, 等. 图像清晰度评价方法研究[J]. 中国图象图形学报, 2004, 9(7): 64-67.
17 Li Qinglin, Xu Xianfeng, Wei Zhiyong, et al. Design and verification of visible and Near-infrared camera for ZY-1-02D satellite[J]. Spacecraft Engineering, 2020, 29(6): 78-84.
17 李庆林, 徐先锋, 魏志勇, 等. 资源一号02D卫星可见近红外相机技术与验证[J]. 航天器工程, 2020, 29(6): 78-84.
18 Darius P, Matamyo S, Serajis S, et al. Sentinel-2 data for land cover/use mapping: A review[J]. Remote Sensing, 2020, 12(14): 2291. DOI: .
doi: 10.3390/rs12142291
19 Misra G, Cawkwell F, Wingler A. Status of phenological research using Sentinel-2 data: A review[J]. Remote Sensing. 2020, 12(17): 2760. DOI: .
doi: 10.3390/rs12172760
20 Li P, Ke Y, Bai J, et al. Spatiotemporal dynamics of suspended particulate matter in the Yellow River estuary, China during the past two decades based on time-series Landsat and Sentinel-2 data[J]. Marine Pollution Bulletin, 2019, 149: 110518. DOI: .
doi: 10.1016/j.marpolbul.2019.110518
21 Liu L, Xiao X, Qin Y, et al. Mapping cropping intensity in China using time series Landsat and Sentinel-2 images and Google Earth Engine[J]. Remote Sensing of Environment, 2020, 239(4): 111624. DOI: .
doi: 10.1016/j.rse.2019.111624
22 Tong Qingxi, Zhang Bing, Zhang Lifu. Current progress of hyperspectral remote sensing in China[J]. Journal of Remote Sensing,2016,20(5):689-707.
22 童庆禧, 张兵, 张立福. 中国高光谱遥感的前沿进展[J]. 遥感学报,2016,20(5): 689-707.
23 Sun Yunzhu, Jiang Guangwei, Li Yunduan, et al. GF-5 Satellite system design and technological characteristics[J]. Aerospace Shanghai, 2019, 36(2): 1-13.
23 孙允珠, 蒋光伟, 李云端, 等. 高分五号卫星方案设计与技术特点[J]. 上海航天, 2019, 36(2): 1-13.
24 Wan L, Lin Y, Zhang H, et al. GF-5 Hyperspectral data for species mapping of mangrove in Mai Po, HongKong[J]. Remote Sensing,2020, 12(4): 656. DOI: .
doi: 10.3390/rs12040656
25 Yuan Jingwen, Wu Chen, Du Bo, et al. Analysis of landscape pattern on urban land use based on GF-5 hyperspectral data[J]. National Remote Sensing Bulletin, 2020, 24(4): 465-478.
25 袁静文, 武辰, 杜博, 等. 高分五号高光谱遥感影像的城市土地利用景观格局分析[J]. 遥感学报, 2020, 24(4): 465-478.
26 Jiao L, Sun W, Yang G, et al. A hierarchical classification framework of satellite multispectral/hyperspectral images for mapping coastal wetlands[J]. Remote Sensing,2019,11(19): 2238. DOI: .
doi: 10.3390/rs11192238
27 Ye B, Tian S, Cheng Q, et al. Application of lithological mapping based on Advanced Hyper Spectral Imager(AHSI) imagery onboard Gaofen-5 (GF-5) satellite[J]. Remote Sensing, 2020, 12(23): 3990. DOI: .
doi: 10.3390/rs12233990
28 Hu Lin, Gan Shu, Yuan Xiping, et al. Study on the spatial distribution characteristics of cyanobacteria bloom in Dianchi Lake based on GF-5[J]. Laser & Infrared,2021,51(2):237-243.
28 胡琳,甘淑,袁希平,等. 基于GF-5的滇池蓝藻水华空间分布特征研究[J]. 激光与红外, 2021, 51(2): 237-243.
29 Sun W, Liu K, Ren G, et al. A simple and effective spectral-spatial method for mapping large-scale coastal wetlands using China ZY-1-02D satellite hyperspectral images[J] International Journal of Applied Earth Observation and Geoinformation, 2021, 104: 102572. DOI: .
doi: 10.1016/j.jag.2021.102572
30 Yang Y, Shang K, Xu Y. Analysis of sensitive spectral characteristics of farmland soil organic matter content based on AHSI/ZY-1-02D data [J]. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. 2021: 6461-6464. DOI: .
doi: 10.1109/IGARSS47720.2021.9554275
31 Shang K, Gu H, Yang Y. Inversion of total copper content in mining soils with different spectral pretreatment techniques using AHSI/ZY1-02D Data[J]. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS,2021: 6461-6464, DOI: .
doi: 10.1109/IGARSS47720.2021.9554275
32 Li Genjun, Yang Xuesong, Zhang Xing, et al. Application and analysis of ZY-1-02D hyperspectral data in geological and mineral survey[J]. Remote Sensing for Land and Resources, 2021, 33(2): 134-140.
32 李根军, 杨雪松, 张兴, 等. ZY1-02D 高光谱数据在地质矿产调查中的应用与分析[J]. 国土资源遥感, 2021, 33(2): 134-140.
No Suggested Reading articles found!