Please wait a minute...
img

Wechat

Remote Sensing Technology and Application  2022, Vol. 37 Issue (5): 1056-1070    DOI: 10.11873/j.issn.1004-0323.2022.5.1056
    
Accuracy Evaluation and Impact Analysis of GEDI Ground Elevation and Canopy Height
Zhihui Yuan1,2(),Sheng Nie2(),Hebing Zhang1,Cheng Wang2,Hongtao Wang1,Xiaohuan Xi2
1.School of Surveying and Land Information Engineering,Henan Polytechnic University,Jiaozuo 454100,China
2.Key Laboratory of Digital Earth Science,Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100094,China
Download:  HTML  PDF (7352KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Accurate extraction of ground elevation and vegetation canopy height is of great significance for the study of topography, ecology and so on. The new generation of Global Ecosystem Dynamics Investigation (GEDI) launched in December 2018 provides an unprecedented opportunity for accurate extraction of ground elevation and vegetation canopy height over large areas. The purpose of this paper is to verify the accuracies of ground elevation and canopy height extracted by GEDI using airborne LiDAR data, and to explore the influence of geographic positioning error, terrain slope, aspect, vegetation cover, azimuth, acquisition time, beam type and vegetation type on the estimation accuracy. The results show that the estimation accuracies of ground elevation and canopy height can be significantly improved by correcting the geolocation error of GEDI data. The main factor that affects the extraction accuracy of canopy height is vegetation cover, followed by slope; while the extraction accuracy of ground elevation is significantly affected by the aspect and slope. Additionally, the results also indicated that the estimation accuracy is high when the vegetation cover is more than 25%, and the accuracies of ground elevation and canopy height are the highest in gentle slope area with slope 0~5°. Overall, this study will provide a basis for the screening and application of GEDI data.

Key words:  Space-borne LiDAR      GEDI      Ground elevation      Canopy height      Accuracy assessment     
Received:  09 June 2021      Published:  13 December 2022
ZTFLH:  P237  
Corresponding Authors:  Sheng Nie     E-mail:  211904020014@home.hpu.edu.cn;niesheng@aircas.ac.cn
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Zhihui Yuan
Sheng Nie
Hebing Zhang
Cheng Wang
Hongtao Wang
Xiaohuan Xi

Cite this article: 

Zhihui Yuan,Sheng Nie,Hebing Zhang,Cheng Wang,Hongtao Wang,Xiaohuan Xi. Accuracy Evaluation and Impact Analysis of GEDI Ground Elevation and Canopy Height. Remote Sensing Technology and Application, 2022, 37(5): 1056-1070.

URL: 

http://www.rsta.ac.cn/EN/10.11873/j.issn.1004-0323.2022.5.1056     OR     http://www.rsta.ac.cn/EN/Y2022/V37/I5/1056

Fig.1  Study area and GEDI spot distribution map
L2AL2B
参数路径参数路径
经度BEAMXXXX/lat_lowestmode经度BEAMXXXX/geolocation/lat_lowestmode
纬度BEAMXXXX/lon_lowestmode纬度BEAMXXXX/geolocation/lon_lowestmode
RH100BEAMXXXX/rhRH100BEAMXXXX/rh100
质量标志BEAMXXXX/quality_flag质量标志BEAMXXXX/geolocation/l2b_quality_flag
地面高程BEAMXXXX/elev_lowestmode地面高程BEAMXXXX/geolocation/elev_lowestmode
平均海面BEAMXXXX/mean_sea_surface方位角BEAMXXXX/geolocation/solar_azimuth
波束BEAMXXXX/beam覆盖度BEAMXXXX/cover
太阳高度角BEAMXXXX/solar_elevation
Table 1  Parameter and path extraction of GEDI data products L2A and L2B
参数LENODSNYBARTNIWO
位移XXXX
坡度X
坡向X
覆盖度XX
方位角X
采集时间(全天/夜晚)XX
光束类型(全功率/覆盖)XX
不同森林类型X
Table 2  Analysis table of different parameters corresponding to each experimental area
Fig.2  Scatter plot of GEDI canopy height and ground elevation estimation in each experimental area
Fig.3  RMSE changes of DTM and CHM before and after translation
Fig.4  Scatter plot of GEDI canopy height and ground elevation estimation in each experimental area after translation
Fig.5  Importance level ranking of canopy height and ground elevation
Fig.6  The order of importance level of canopy height and ground elevation in each experimental area
Fig.7  Variation of RMSE and R2 of DTM with different slopes
Fig.8  Variation of RMSE and R2 of CHM with different slopes
Fig.9  Variation of RMSE and R2 of DTM with different aspect
Fig.10  Variation of RMSE and R2 of CHM with different aspect
Fig.11  RMSE and R2 variation of DTM with different coverage
Fig.12  Variation of RMSE and R2 of CHM with different coverage
Fig.13  RMSE and R2 change diagram of DTM with different azimuth in NIWO experimental area
Fig.14  Variation of RMSE and R2 of CHM at different azimuth in NIWO experimental area
Fig.15  RMSE and R2 variation of DTM at different acquisition time
Fig.16  RMSE and R2 variation of CHM at different acquisition time
Fig.17  RMSE and R2 diagrams of DTM with different beam types
Fig.18  RMSE and R2 diagrams of CHM with different beam types
Fig.19  RMSE and R2 diagrams of DTM of different vegetation types
Fig.20  RMSE and R2 variation of CHM in different vegetation types
1 Brown S L, Schroeder P E. Spatial patterns of aboveground production and mortality of woody biomass for Eastern U.S. forests[J].Ecological Applications,1999,9(3):968-980. DOI: [0968:SPOAPA]2.0.CO;2.
doi: 10.1890/1051-0761(1999)009
2 Wang Rui, Xing Yanqiu, Qiu Sai, et al. Study on estimation of forest canopy height over sloping terrain based on ICESat-GLAS full waveform data[J]. Journal of Anhui Agricultural Sciences, 2014, 42(9): 2790-2793.
2 王蕊,邢艳秋,邱赛,等. 基于ICESat-GLAS全波形数据的坡地森林冠层高度估测[J]. 安徽农业科学, 2014, 42(9): 2790-2793.
3 Pang Yong, Li Zengyuan, Chen Bowei, et al. Status and development of spaceborne Lidar applications in forestry [J]. Aerospace Shanghai,2019,36(3):20-28.
3 庞勇,李增元,陈博伟,等. 星载激光雷达森林探测进展及趋势[J]. 上海航天,2019,36(3):20-28.
4 Pang Yong, Li Zengyuan, Chen Erxue,et al.Lidar remote sensing technology and its application in forestry[J]. Scientia Silvae Sinicae,2005,41(3):129-136.
4 庞勇,李增元,陈尔学,等.激光雷达技术及其在林业上的应用[J].林业科学,2005,41(3):129-136.
5 Xu Chunxiao, Zhou Feng. Development and applications of space-borne Laser remote sensing technology[J]. Spacecraft Recovery & Remote Sensing,2009,30(4):26-31.
5 许春晓,周峰. 星载激光遥感技术的发展及应用[J]. 航天返回与遥感,2009,30(4):26-31.
6 Zhao Yiming, Li Yanhua, Shang Yanan, et al. Application and development direction of Lidar[J]. Journal of Telemetry, Tracking and Command,2014,35(5):4-22.
6 赵一鸣,李艳华,商雅楠,等. 激光雷达的应用及发展趋势[J]. 遥测遥控,2014,35(5):4-22.
7 Lefsky M A, Cohen W B, Acker S A, et al. Lidar remote sensing of the canopy structure and biophysical properties of douglas-fir western hemlock forests[J]. Remote Sensing of Environment,1999,70(3):339-361. DOI: .
doi: 10.1016/S0034-4257(99)00052-8
8 Zhang Zhijie, Xie Huan, Tong Xiaohua, et al. Research progress of full waveform processing technology of satellite laser altimetry[J]. Science of Surveying and Mapping,2019,44(12):168-178.
8 张志杰,谢欢,童小华,等. 星载激光测高全波形数据处理技术研究进展[J]. 测绘科学,2019,44(12):168-178.
9 Wang Yuanyuan, Li Guicai, Ding Jianhua, et al. A combined GLAS and MODIS estimation of the global distribution of mean forest canopy height[J]. Remote Sensing of Environment,2016,174:24-43. DOI: .
doi: 10.1016/j.rse.2015.12.005
10 Cai Longtao, Xing Yanqiu, Yue Chunyu,et al.Estimation of AGB based on ICESat-GLAS waveform and LPA data[J]. Infrared and Laser Engineering,2020,49(S2):56-63.
10 蔡龙涛,邢艳秋,岳春宇,等.基于ICESat-GLAS波形与LPA数据估测森林生物量[J]. 红外与激光工程,2020,49():56-63.
11 Yue Chunyu, Zheng Yongchao, Xing Yanqiu, et al. Technical and application development study of space-borne LiDAR in forestry remote sensing[J]. Infrared and Laser Engineering,2020, 49(11): 105-114.
11 岳春宇,郑永超,邢艳秋,等. 星载激光遥感林业应用发展研究[J]. 红外与激光工程, 2020, 49(11):105-114.
12 Guerra-Hernández Juan, Pascual Adrián. Using GEDI Lidar data and airborne laser scanning to assess height growth dynamics in fast-growing species:A showcase in Spain[J]. Forest Ecosystems, 2021,8(1):182-198.
13 Sun T, Qi J B, Huang H G. Discovering forest height changes based on spaceborne Lidar data of ICESat-1 in 2005 and ICESat-2 in 2019:A case study in the Beijing-Tianjin-Hebei region of China[J]. Forest Ecosystems,2020,7(4):704-715.
14 Yang Ting, Wang Cheng, Li Guicai, et al. Mapping of forest canopy height in China based on spaceborne Lidar glas and optical MODIS data[J]. Scientia Sinica(Terrae),2014,44(11): 2487-2498.
14 杨婷,王成,李贵才,等. 基于星载激光雷达GLAS和光学MODIS数据中国森林冠层高度制图[J]. 中国科学:地球科学,2014,44(11):2487-2498.
15 Qi W H, Lee S, Hancock S, et al. Improved forest height estimation by fusion of simulated GEDI Lidar data and TanDEM-X InSAR data[J]. Remote Sensing of Environment,2019,221:621-634. DOI: .
doi: 10.1016/j.rse. 2018.11.035
16 Xie Dongping, Li Guoyuan, Zhao Yanming, et al. U.S. GEDI space-based Laser altimetry system and its application[J]. Space International, 2018(12): 39-44.
16 谢栋平,李国元,赵严铭,等. 美国GEDI天基激光测高系统及其应用[J]. 国际太空, 2018(12): 39-44.
17 Rishmawi K, Huang C Q, Zhan X W. Monitoring key forest structure attributes across the conterminous United States by Integrating GEDI LiDAR measurements and VIIRS data[J]. Remote Sensing,2021,13(3):442-442. DOI: .
doi: 10.3390/RS13030442
18 Potapov P, Li X Y, Hernandez-Serna A,et al. Mapping global forest canopy height through integration of GEDI and Landsat data[J]. Remote Sensing of Environment,2021,253. DOI: .
doi: 10.1016/J.RSE.2020.112165
19 Dubayah R, Hofton M, et al. GEDI L2A Elevation and height metrics data global footprint level V001. distributed by NASA EOSDIS land processes DAAC, DOI:10.5067/GEDI/GEDI02_A.001, 2019-03-25 2020-07-29.
20 Dubayah R, Hofton M. GEDI L2B canopy cover and vertical profile metrics data global footprint level V001[DB/OL]. NASA EOSDIS Land Processes DAAC,DOI:10.5067/GEDI/GEDI02_B.001,2019-03-25 2020-07-29.
21 Victoria M S, Megan E C, Maxwell B J, et al. Integrating National Ecological Observatory Network (NEON) Airborne Remote Sensing and In-Situ Data for Optimal Tree Species Classification[J]. Remote Sensing,2020,12(9): DOI: 10.3390/ rs12091414.
22 Liao Kaitao, Qi Shuhua, Wang Cheng,et al. Estimation of forest aboveground biomass and canopy height in Jiangxi Provin-ce using GLAS and Landsat TM images[J].Remote Sensing Technology and Application,2018,33(4):713-720.
22 廖凯涛,齐述华,王成,等. 结合GLAS和TM卫星数据的江西省森林高度和生物量制图[J]. 遥感技术与应用,2018,33(4):713-720.
23 Liu L Y, Zhang X.Global Land Cover Product with Fine Classification System at 30-m in 2020. Aerospace Information Research Institute, Chinese Academy of Sciences.http:∥data.casearth.cn/sdo/detail/5d904b7a0887164a5c7fbfa0,2020-11-24 2021-4-1.
23 刘良云,张肖. 2020年全球30 m精细地表覆盖产品.中国科学院空天信息创新研究院. http://data.casearth.cn/sdo/detail/5d904b7a0887164a5c7fbfa0,2020-11-24 2021-4-1.
24 Adam M, Urbazaev M, Dubois C, et al. accuracy assessment of GEDI terrain elevation and canopy height estimates in european temperate forests: influence of environmental and acquisition parameters[J]. Remote Sensing, 2020, 12(23): 3948-3948. DOI: .
doi: 10.3390/rs12233948
25 Lv Hongyan, Feng Qian. A review of random forests algorithm[J]. Journal of the Hebei Academy of Sciences,2019,36(3): 37-41.
25 吕红燕,冯倩. 随机森林算法研究综述[J]. 河北省科学院学报,2019,36(3):37-41.
26 Fang Kuangnan, Wu Jianbin, Zhu Jianping, et al. A Review of Technologies on Random Forests[J]. Statistics & Information Forum,2011,26(3):32-38.方匡南,吴见彬,朱建平,等. 随机森林方法研究综述[J]. 统计与信息论坛.2011,26(3):32-38.
27 Wang C, Zhu X X, Nie S, et al. Ground elevation accuracy verification of ICESat-2 data: A case study in Alaska, USA.[J]. Optics Express,2019,27(26):38168-38179. DOI: .
doi: 10. 1364/OE.27.038168
28 Tang Xuguang. Estimation of forest aboveground biomass by integrating ICESat/GLAS waveform and TM data[D].Chang-chun:Chinese Academy of Sciences(Northeast Institute Geography and Agroecology),2013.
28 汤旭光. 基于激光雷达与多光谱遥感数据的森林地上生物量反演研究[D]. 长春: 中国科学院研究生院(东北地理与农业生态研究所),2013.
No Suggested Reading articles found!