Please wait a minute...
img

Wechat

Remote Sensing Technology and Application
    
Derivation and Comparison of Water Vapor between Infrared Channels and Near Infrared Channels from FY\|3
Zhou Aiming1,2,Bao Yansong1,2,Wei Ming2,Lu Qifeng3
(1.Shanghai Institute of Satellite Engineering, Shanghai 201109,China;
2.School of Atmospheric Physics,Nanjing University of Information Science & Technology,
Nanjing 210044,China;3.National Satellite Meteorological Center,Beijing 100081,China)
Download:  PDF (2615KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Atmospheric water vapor content has important significance for radiometric correction of satellite image,understanding of atmospheric micro\|physical process,precipitation prediction and so on.We will retrievie atmospheric column water vapor based on Moderate Resolution Imaging Spectroradiometer (MERSI)near infrared channels and Visible and Infrared Radiometer (VIRR)thermal infrared channels datas of FY\|3A,respectively.Comparing the retrieval results of MERSI,VIRR and the observations of sounding ground stations respectively,we find :① the observed correlation between retrieval results of MERSI and observations is 0.763,while retrieval results of VIRR has poor correlations with observations,which is0.169.What’s more,The retrieval accuracy of MERSI (1.108 g/cm2)is higher than that of VIRR (1.894 g/cm2);②The average atmospheric column water vapor with three channels of MERSI has higher retrieval accuracy than channel 17th(1.133 g/cm2),18th(1.424 g/cm2),19th(1.827 g/cm2).The main reason is that three channels have different sensitivities of water vapor,and utilizing three channels to retrieve atmospheric column water vapor content can reach the effect of perfection.
Key words:  MERSI      VIRR      Water vapor      Retrieval     
Received:  08 April 2016      Published:  13 September 2017
P426  
  TP79  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors

Cite this article: 

. Derivation and Comparison of Water Vapor between Infrared Channels and Near Infrared Channels from FY\|3. Remote Sensing Technology and Application, 2017, 32(4): 651-659.

URL: 

http://www.rsta.ac.cn/EN/10.11873/j.issn.1004-0323.2017.4.0651     OR     http://www.rsta.ac.cn/EN/Y2017/V32/I4/651

[1]Hu Xiuqing,Huang Yifen,Lu Qifeng,et al.Retrieving Precipitable Water Vapor based on the Near-Infrared Data of FY-3A[J].Journal of Applied Meteorological Science,2011,22(1):46-56.[胡秀清,黄意玢,陆其峰,等.利用FY-3A近红外资料反演水汽总量[J].应用气象学报,2011,22(1):46-56.]
[2]Liu Guowei.Atmospheric Process of Hydrological Cycle[M].Beijing:Science Press,1997.[刘国纬.水文循环的大气过程[M].北京:科学出版社,1997.]
[3]Li Honglin,Li Wanbiao.Retrieval of Atmospheric Total Water Vapor with MODIS Near Infrared Measurements[J].Acta Scientiarum Naturalium University Pekinensis,2008,44(1):121-128.[李红林,李万彪.MODIS近红外资料反演大气水汽总含量[J].北京大学学报:自然科学版,2008,44(1):121-128.]
[4]Bennartz R,Fscher J.Rstrieval of Columnar Water Vapor Over Land from Backscattered Solar Radiation Using the Medium Resolution Imaging Spectrometer[J].Remote Sensing of Environment,2001,78:274-283.
[5]Jiang Lipeng,Qin Zhihao,Xie Wen.Retrieving Atmospheric Water Vapor from MODIS Near Infrared Data[J].Remote Sensing for Land & Resources,2006,(3):5-10.[姜立鹏,覃志豪,谢雯.针对MODIS近红外数据反演大气水汽含量研究[J].国土资源遥感,2006,(3):5-10.]
[6]Tan Lina,Deng Yonglong,Zhou Shaolong.Atmospheric Water Vapor Retrieval based on FY-3A/MERSI over Qinghai Haibei Areas[J].Qinghai Meteorology,2015,(1):20-24.[谭丽娜,邓永龙,周少龙.基于FY-3A/MERSI数据的青海海北地区大气水汽含量反演[J].青海气象,2015,(1):20-24.]
[7][KG2.65mm]Liu Anwei,Liu Liangyun,Zhang Hao,et al.Comparative Study of the Algorithm on Hyperspectral Inversion of the Water-vapor Content based on Hyperion Image[J].Remote Sensing Technology and Application,2016,31(4):672-681.[刘安伟,刘良云,张浩,等.基于Hyperion影响的高光谱水汽含量反演的算法比较研究[J].遥感技术与应用,2016,31(4):672-681.]
[8][KG2.35mm]Zhang Tianlong,Wei Jing,Gan Jingmin,et al.Precipitable Water Vapor Retrieval with MODIS Near Infrared Data[J].Spectroscopy and Spectral Analysis,2016,36(8):2378-2383.[张天龙,韦晶,甘敬民,等.利用MODIS近红外数据反演大气水汽含量研究[J].光谱学与光谱分析,2016,36(8):2378-2383.]
[9]Kleespies T J,McMillin L M.Retrieval of Precipitable Water from Observation in the Split Window over Varying Surface Temperature[J].Jouinal of Applied Meteorology,1990,29:851-862.
[10]Emery W,Yu Y,Wick G A,et al.Correcting Infrared Satellite Estimations of Sea Surface Temperature for Atmospheric Water Vapor Attention[J].Journal of Geophysical Research,1994,99(C3):5219-5236.
[11]Sun Zhiwei,Tang Bohui,Wu Hua,et al.Retrieval and Validation of Land Surface Temperature with General Split-window Algorithm from NOAA-18(N)AVHRR/3 Data[J].Journal of Geo-Information Science,2013,15(3):431-439.[孙志伟,唐伯惠,吴骅,等.通用劈窗算法的NOAA-18(N)AVHRR/3数据地表温度遥感反演与验证[J].地球信息科学学报,2013,15(3):431-439.]
[12]Tang B H,Bi Y Y,Li Z L,et al.Generalized Split-window Algorithm for Estimate of Land Surface Temperature from Chinese Geostationary FengYun Meteorological Satellite (FY-2C)Data[J].Sensors,2008,8(2):933-951.
[13]Wang Mengmeng,He Guojin,Zhang Zhaoming,et al.Atmospheric Water Vapor Retrieval from Landsat 8 TIRS Data Using Split-window Algorithm[J].Remote Sensing Technology and Application,2016,31(4):672-681.[王猛猛,何国金,张兆明,等.基于Landsat 8 TIRS 数据的大气水汽含量反演劈窗算法[J].遥感技术与应用,2017,32(1):166-172.]
[14]Wang Yongqian,Shi Jiancheng,Liu Zhihong,et al.Passive Microwave Remote Sensing of Precipitable Water Vapor over Beijing-Tianjian-Hebei Region based on AMSR-E[J].Geomatics and Information Science of Wuhan University,2015,40(4):479-486.[王永前,施建成,刘志红,等.利用微波辐射计AMSR-E的京津冀地区大气水汽反演[J].武汉大学学报(信息科学版),2015,40(4):479-486.]
[15]Aires F,Prigernt C,Rossow W B,et al.A New Neural Network Approach Including First Gusess for Retrieval of Atmospheric Water Vapor,Cloud Liquid Water Path,Surface Tempeture,and Emissivities over Land from Satellite Microwave Observations[J].Journal of Geophysical Research,2000,106(d104):14887-14907.
[16]Liu Q,Weng F.One-dimensional Variational Retrieval Algorithm of Tempeture,Water Vapor,and Cloud Water Profiles from Advanced Microwave Sounding Unit (AMSU)[J].IEEE Transactions on Geoscience and Remote Sensing,2005,43(5):1087-1095.
[17]Deeter M N.A New Satellite Method for Retrieving Precipitable Water Vapor over Land and Ocean[J].Geophysical Research Letters,2007,340(2):155-164.
[18]Cui Lina,Xie Yong,Xie Jintao.Retrieval of Atmospheric Water by MODIS Satellite Remote Sensing[J].Shihezi Science and Technology,2013,(6):21-23.[崔丽娜,谢勇,谢金涛.MODIS卫星遥感反演大气水概述[J].石河子科技,2013,(6):21-23.]
[19]Frouin R,Deschamps P Y,Lecomte P.Dermination from Space Of Atmospheric Total Water Vapor Amounts by Differential Absorption Near 940nm:Theory and Airborne Verification[J].J Appl Meteor,1990,29(6):448-459.
[20]Gao B C,Goetz A F H.ColumnAtmospheric Water Vapor and Vegetation Liquid Water Retrievals from Airborne Imaging Spacetrometer Data[J].Journal of Geophysical Research Atmospheres,1990,95(D4):3549-3564.
[21]Gao B C,Heidebrecht K B,Goetz A F H.Derivation of Scaled Surface Reflectances from AVIRIS Data[J].Remote Sensing of Environment,1993,44(2-3):165-178.
[22]Wang Xiang,Zhao Dongzhi,Su Xiu,et al.Retrieving Precipitable Water Vapor based on FY-3A Near-IR Data[J].Journal of Infrared Millim Waves,2012,31(6):550-555.[王祥,赵冬至,苏岫等.基于岸基实测数据的FY-3A近红外通道海洋大气水汽反演[J].红外与毫米波学报,2012,31(6):550-555.]
[23]Li Z L,Li J,Su Z B,et al.A New Approach for Retrieving Precipitable Water from ATSR2 Splite-window Channel Data over Land Area[J].International Journal of Remote Sensing,2003,24(24):5095-5117.
[24]Fan Tianxi.The Characteristics and Functions of the Meteorological Satellite Fengyun 3[J].Meteorological Science and Technology,2002,30(6):321-327.[范天锡.风云三号气象卫星的特点和作用[J].气象科技,2002,30(6):321-327.]
[25]Wang Weidong,Zhao Qinglan,Quan Wenting.Application of VIRR FY-3 Data in Drought Monitoring in Shaanxi Province[J].Shanxi Meteorology,2015,(2):15-18.
[王卫东,赵青兰,权文婷.FY-3 VIRR数据在陕西省干旱监测中的应用[J].陕西气象,2015(2):15-18.]
[26]Xu Kang,Bao Yanzong,Min Jinzhong,et al.Research on  Identification of Land Surface Type in China based on FY-3A/MERSI[J].Science Technology and Engineering,2014,14(29):253-259.[徐康,鲍艳松,闵锦忠.基于FY-3A/MERSI中国区域地表类型识别研究[J].科学技术与工程,2014,14(29):253-259.]
 
No Suggested Reading articles found!