Please wait a minute...
img

Wechat

Remote Sensing Technology and Application  2019, Vol. 34 Issue (6): 1212-1220    DOI: 10.11873/j.issn.1004-0323.2019.6.1212
    
Common Re-calibration Technology for Spaceborne Microwave Atmospheric Humidity Sounder
Jiaoyang Li1,2(),Zhenzhan Wang1(),Songyan Gu3,Shengwei Zhang1
1.Key Laboratory of Microwave Remote Sensing, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
2.University of Chinese Academy of Sciences, Beijing 100049, China
3.National Satellite Meteorological Center, China Meteorological Administration, Beijing 100081, China
Download:  HTML  PDF (481KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The Spaceborne Microwave Humidity Sounder is an important payload of a meteorological satellite, which can detect the atmospheric humidity. The long-term observation data of several sounders can provide important support for meteorological forecast, data assimilation and global climate change monitoring. Due to the lack of absolute reference for microwave radiation and the difference between the characteristics and the calibration method between each sounder, re-calibration is an important technology for obtaining long-term consistent and stable observation data. Since 2008, China has launched 4 spaceborne microwave humidity sounder onboard the Fengyun-3 series meteorological satellites. There are more than 10 years observation data need to be recalibrated for valuable application. For this purpose, this paper summarized the research status of the spaceborne microwave humidity sounder domestic and overseas at first. Then the existed recalibration method for these sounders are summarized in detail. In addition, the plan of the recalibration for Chinese spaceborne microwave humidity sounders are given, which will provide the key reference for the future re-calibration processing.

Key words:  Spaceborne Microwave Atmospheric Humidity Sounder      Re-calibration      Consistency      Common technology     
Received:  15 January 2019      Published:  23 March 2020
ZTFLH:  TP722.6  
Corresponding Authors:  Zhenzhan Wang     E-mail:  lijiaoyang199204@126.com;wangzhenzhan@mirslab.cn
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Jiaoyang Li
Zhenzhan Wang
Songyan Gu
Shengwei Zhang

Cite this article: 

Jiaoyang Li,Zhenzhan Wang,Songyan Gu,Shengwei Zhang. Common Re-calibration Technology for Spaceborne Microwave Atmospheric Humidity Sounder. Remote Sensing Technology and Application, 2019, 34(6): 1212-1220.

URL: 

http://www.rsta.ac.cn/EN/10.11873/j.issn.1004-0323.2019.6.1212     OR     http://www.rsta.ac.cn/EN/Y2019/V34/I6/1212

探测仪频率/GHz带宽(边带数量)极化角

SSM/T

-2

美国

91.655±1.251.5(2)θ
150.0±1.251.5(2)θ
183.31±1.00.5(2)θ
183.31±3.01.0(2)θ
183.31±7.01.5(2)θ

AMSU

-B

美国

89.01.0(2)90-θ
150.01.0(2)90-θ
183.31±1.00.5(2)90-θ
183.31±3.01.0(2)90-θ
183.31±7.02.0(2)90-θ
HSB150.01.0(2)90-θ
美国183.31±1.00.5(2)90-θ
巴西183.31±3.01.0(2)90-θ
183.31±7.02.0(2)90-θ

MHS

美国

欧洲

89.02.4(1)90-θ
157.02.4(1)90-θ
183.311±1.00.5(2)θ
183.31±3.00.9(2)θ
190.3112.2(1)90-θ

ATMS

美国

88.22.0(1)90-θ
165.53.0(1)θ
183.31±1.00.5(2)θ
183.31±3.01.0(2)θ
183.31±7.02.0(2)θ

MWHS

中国

1501.0(2)90-θ
1501.0(2)θ
183.31±10.5(2)90-θ
183.31±31.0(2)90-θ
183.31±71.0(2)90-θ

MWHS

-II

中国

891.5(2)90-θ
1501.5(2)90-θ
183.31±10.5(2)θ
183.31±1.80.7(2)θ
183.31±31(2)θ
183.31±4.52(2)θ
183.31±72(2)θ
Table 1  The microwave humidity sounders onboard sunsynchronous orbit satellites at home and abroad
1 Hartmann D L, Klein Tank A M G, et al. Observations: Atmosphere and Surface[C]∥Climate Change 2013: The Physical Science Basis. United Kingdom: Cambridge University Press, 2013.
2 GCOS. Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC (2010 Update[EB/OL]. , 2010.
3 Kobayashi S, Poli P, John V O. Characterisation of Special Sensor Microwave Water Vapor Profiler (SSM/T-2) Radiances Using Radiative Transfer Simulations from Global Atmospheric Reanalyses[J]. Advances in Space Research, 2017, 59(4):917-935.
4 Ulaby F, Long D. Microwave Radar and Radiometric Remote Sensing[M]. Ann Arbor: University of Michigan Press, 2014.
5 Andersson E, Hólm E., Bauer P, et al. Analysis and Forecast Impact of the Main Humidity Observing Systems[J]. Quarterly Journal of the Royal Meteorological Society, 2007, 133(627): 1-10.
6 John V O, Holl G, Buehler S A, et al. Understanding Intersatellite Biases of Microwave Humidity Sounders Using Global Simultaneous Nadir Overpasses[J]. Journal of Geophysical Research Atmospheres, 2012, 117(D02305). .
doi: 10.102912011JD016349
7 Xavier P K, John V O, Buehler S A, et al. Variability of Indian Summer Monsoon in a New Upper Tropospheric Humidity Data Set[J]. Geophysical Research Letters, 2010, 37(5):137-147.
8 Eymard L, Karbou F, Janicot S, et al. On the Use of Advanced Microwave Sounding Unit-A and -B Measurements for Studying the Monsoon Variability over West Africa[J]. Journal of Geophysical Research, 2010, 115(D20):D20115. .
doi: 10.1029/2009JD012935
9 Buehler S A, Kuvatov M, John V O, et al. An Upper Tropospheric Humidity Data Set from Operational Satellite Microwave Data[J]. Journal of Geophysical Research, 2008, 113(D14):D14110. .
doi: 10.1029/2007JD009314
10 Galin I, Brest DH, Martner GR. The DMSP SSM/T-2 Microwave Water-vapor Profile[C]∥ SPIE Proceedings. 1935:189-198. 1993.
11 Saunders R W, Hewison T J, Stringer S J, et al. The Radiometric Characterization of AMSU-B[J]. IEEE Transactions on Microwave Theory and Techniques, 1995, 43(4):760-771.
12 Bonsignori R. The Microwave Humidity Sounder (MHS): In-orbit Performance Assessment[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2007, 67440A:67440A-1-67440A-12.
13 Lambrigtsen B, Calheiros R V. The Humidity Sounder for Brazil - An International Partnership[J]. IEEE Transactions on Geoscience & Remote Sensing, 2003, 41(2):352-361.
14 Kim E, Lyu C J, Leslie R V, et al. The Advanced Technology Microwave Sounder (ATMS): A New Operational Sensor Series[C]∥ IEEE Geoscience and Remote Sensing Symposium, 2012.
15 Zhang Shengwei, Li Jing, Jiang Jingshan, et al. Design and Development of Microwave Humidity Sounder for FY-3 Meteorological Satellite[J]. Journal of Remote Sensing, 2008,12(2):199-207.
15 张升伟, 李 靖, 姜景山,等. 风云三号卫星微波湿度计的系统设计与研制[J]. 遥感学报,2008,12(2):199-207.
16 Zhang Yu, Zhang Shengwei, Wang Zhenzhan, et al. Technology Development of Atmospheric Humidity Sounding of FY-3 Satellite[J]. Aerospace Shanghai, 2017, 34(4): 52-61.
16 张瑜, 张升伟, 王振占,等. FY-3卫星大气湿度微波探测技术发展[J]. 上海航天, 2017, 34(4): 52-61.
17 Falcone V J, Griffin M K, Isaacs R G, et al. SSM/T-2 Calibration and Validation Data Analyses[C]∥ IEEE Topical Symposium on Combined Optical, Microwave, Earth & Atmosphere Sensing. 1993.
18 Atkinson N C. Calibration, Monitoring and Validation of AMSU-B[J]. Advances in Space Research, 2001, 28(1):117-126.
19 Moradi I, Ferraro R R. Inter-calibration and Validation of Observations from SAPHIR and ATMS Instruments[C]∥ Agu Fall Meeting. AGU Fall Meeting Abstracts, 2015.
20 Brogniez Hélène, English S, Mahfouf Jean-François, et al. A Review of Sources of Systematic Errors and Uncertainties in Observations and Simulations at 183 GHz[J]. Atmospheric Measurement Techniques, European Geosciences Union, 2016, 9 (5):2207-2221. .
doi: 10.5194t-9-2207-2016
21 Lu Q, Lawrence H, Bormann N, et al. An evaluation of FY-3C Satellite Data Quality at ECMWF and the Met Office[M]. European Centre for Medium-Range Weather Forecasts, 2015.
22 Saunders R W, Blackmore T A, Candy B, et al. Monitoring Satellite Radiance Biases Using NWP Models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(3):1124-1138.
23 Ebrahimi H, Chen R, Wilheit T, et al. Inter-calibration of Microwave Radiometeres on Polar Orbiters in the GPM Constellation[C]∥ Geoscience & Remote Sensing Symposium. IEEE, 2016.
24 Pickle J D, Isaacs R G, Griffin M K, et al. Comparison of Colocated SSM/T-2 and MIR Measurements: Results from the Calibration study[C]∥ Proceedings of SPIE - The International Society for Optical Engineering, 1993.
25 English S J, Guillou C, Prigent C, et al. Aircraft Measurements of Water Vapour Continuum Absorption at Millimetre Wavelengths[J]. Quarterly Journal of the Royal Meteorological Society, 2010, 120(517):603-625.
26 Mcgrath A, Hewison T J. Radiometric Characterisation of the UK Met. Office Microwave Airborne Radiometer Scanning System (MARSS)[C]∥ IEEE International Geoscience & Remote Sensing Symposium, 2011.
27 Blackwell W J, Bickmeier L J, Jairam L G, et al. On-orbit Radiometric Validation and Field-of-view Calibration of Spaceborne Microwave Sounding Instruments[C]∥ IEEE Microwave Radiometry & Remote Sensing of the Environment, Microrad, 2008.
28 Larar A M, Zhou D K, Liu X, et al. Advanced Sounder Validation Studies from Recent NAST-I Airborne Field Campaigns[C]∥ Society of Photo-optical Instrumentation Engineers. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2016.
29 Cao C, Weinreb M, Xu H. Predicting Simultaneous Nadir Overpasses among Polar-Orbiting Meteorological Satellites for the Intersatellite Calibration of Radiometers[J]. Journal of Atmospheric and Oceanic Technology,2004,21(4):537-542.
30 Cao C, Xu H, Sullivan J, et al. Intersatellite Radiance Biases for the High-resolution Infrared Radiation Sounders (HIRS) on board NOAA-15, -16, and -17 from Simultaneous Nadir Observations[J]. Journal of Atmospheric and Oceanic Technology, 2005, 22(4):381-395.
31 Luo J, Jeyaratnam J, Shan N,et al. Inter-calibration of UTH-related Radiances from SSM/T-2 and AMSU-B[EB/OL]. NOAA CREST,2017. .
32 Gu Songyan, Wang Zhenzhan, Li Jing, et al. FY-3A/MWHS Data Calibration and Validation Analysis[J], Engineering Sciences, 2013, 15(7):92-100.
32 谷松岩, 王振占, 李靖,等. FY-3A/MWHS在轨辐射定标及结果分析[J]. 中国工程科学,2013, 15(7):92-100.
33 He Jieying, Zhang Shengwei. In-orbit Performance Analysis on Monitoring Typhoon with FY-3B/MWHS,2016,27(6):709-715.
33 何杰颖, 张升伟, 王澄海,等. FY-3B/MWHS性能参数在轨实时监测[J]. 应用气象学报,2016,27(6):709-715.
34 Hu Y, Jun Z, Fuzhong W, et al. Developing Vicarious Calibration for Microwave Sounding Instruments Using Lunar Radiation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018,56(11):6723-6733.
35 Han Y, Paul Van Delst, Liu Q H, et al. JCSDA Community Radiative Transfer Model(CRTM)-Version 1[R]. NOAA Technical Report NESDIS122. 2006.
36 Hocking J, Rayer P J, Rundle D, et al. RTTOV v11 Users Guide NWP-SAF Report, Met[R]. Office: Exeter, UK, 2014.
37 Buehler S, Eriksson P, Kuhn T, et al. ARTS, the Atmospheric Radiative Transfer Simulator [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2005, 91(1):65-93.
38 Gordley L L, Marshall B T, Allen Chu D. Linepak: Algorithms for Modeling Spectral Transmittance and Radiance [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1994, 52(5):563-580.
39 Berk A, Bernstein L S, Robertson D C. MODTRAN: A Moderate Resolution Model for LOWTRAN 7[R]. Report GL-TR-89–0122; Geophysics Laboratory: Bedford, MD, USA, 1989.
40 Clough S, Shephard M, Mlawer E, et al. Atmospheric Radiative Transfer Modeling: A Summary of the AER Codes[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2005, 91(2):233-244.
41 Liebe H, Hufford G, Cotton M. Propagation Modeling of Moist Air and Suspended Water/ice Particles at Frequencies Below 1 000 GHz[C]∥ Proceedings of the In AGARD, Atmospheric Propagation Effects through Natural and Man-Made Obscurants for Visible to MM-Wave Radiation 11 p (SEE N94-30495 08-32), F, 1993.
42 Rosenkranz P W. Water Vapor Microwave Continuum Absorption: A Comparison of Measurements and Models [J]. Radio Science, 1998, 33(4):919-928.
43 English S J, Hewison T J. Fast Generic Millimeter-wave Emissivity Model[C]∥Microwave Remote Sensing of the Atmosphere and Environment, International Society for Optics and Photonics, 1998, 3503: 288-300.
44 Karbou F, Gérard, Elisabeth, Rabier F. Global 4DVAR Assimilation and Forecast Experiments Using AMSU Observations over Land. Part I: Impacts of Various Land Surface Emissivity Parameterizations[J]. Weather and Forecasting, 2010, 25(1):5-19.
45 Prigent C, Aires F, Wang D, et al. Sea‐surface Emissivity Parametrization from Microwaves to Millimetre Waves[J]. Quarterly Journal of the Royal Meteorological Society, 2017, 143(702):596-605.
No Suggested Reading articles found!