Please wait a minute...
img

Wechat

Remote Sensing Technology and Application  2020, Vol. 35 Issue (1): 97-110    DOI: 10.11873/j.issn.1004-0323.2020.1.0097
    
Evaluation of the Applicability of Different Dielectric Models for Soil Moisture Retrieval based on the Ground-based Radiometer Measurements
Zuoliang Wang1,2(),Jun Wen3(),Rong Liu1,Zhenchao Li1,Donghai Zheng4,Xin Wang1
1. Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. College of Atmospheric Sciences, Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, Chengdu University of Information Technology, Chengdu 610225, China
4. National Tibetan Plateau Data Center, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
Download:  HTML  PDF (4748KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Based on soil moisture and freeze/thaw comprehensive experiments conducted at the north-eastern part of the Tibetan Plateau, the L-band brightness temperature, the in-situ soil moisture and temperature, vegetation leaf area index are measured simultaneously for the purpose of evaluating performances on forward brightness temperature simulation and soil moisture retrieval using four dielectric constant models, including Wang-Schmugge, Mironov, Dobson, and Four-Phase model. The forward brightness temperature simulations indicate that the difference of simulated brightness temperature between Wang schmugge model and the other three dielectric constant models is most significant at lower soil moisture content condition (soil moisture is less than 0.23 m3·m-3) , nevertheless, the difference of Mironov model simulation is most significant in contrast with the ones of other three models at higher soil moisture condition (soil moisture is greater than 0.23 m3·m-3). The practical retrieval of soil moisture from the ground-based radiometer measurements indicate that Wang-Schmugge model can effectively reduce the underestimation of soil moisture at the horizontal polarization, this resulted an improvement to the accuracy of retrieved soil moisture. Mironov model can reduce the underestimation of retrieved soil moisture at the vertical polarization. In accordance with a state-of-the-art parameterization scheme, the evaluation of performances of four dielectric constant models at the typical alpine meadow is potential for selecting optimum soil moisture retrieval by using soil dielectric model from space-borne L-band radiometer observation over the Tibetan Plateau

Key words:  L-Band      Passive microwave      Microwave brightness temperature      Soil permittivity model      Soil moisture retrieval     
Received:  03 November 2019      Published:  01 April 2020
ZTFLH:  TP721.1  
Corresponding Authors:  Jun Wen     E-mail:  zuoliangwang@lzb.ac.cn;jwen@cuit.edu.cn
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Zuoliang Wang
Jun Wen
Rong Liu
Zhenchao Li
Donghai Zheng
Xin Wang

Cite this article: 

Zuoliang Wang,Jun Wen,Rong Liu,Zhenchao Li,Donghai Zheng,Xin Wang. Evaluation of the Applicability of Different Dielectric Models for Soil Moisture Retrieval based on the Ground-based Radiometer Measurements. Remote Sensing Technology and Application, 2020, 35(1): 97-110.

URL: 

http://www.rsta.ac.cn/EN/10.11873/j.issn.1004-0323.2020.1.0097     OR     http://www.rsta.ac.cn/EN/Y2020/V35/I1/97

Fig.1  Overview of field data and L-band passive microwave remote sensing instrument used in this study
土壤基质密度 孔隙度 植被单次散射反照率 沙土含量 粘土含量 体密度 频率 观测角
/(g/cm3) /m3·m-3 /% /% /(g/m-3) /GHz
2.65 0.50 0.05 32.30 10.50 1.12 1.41 50.0
Table1  Values of key parameters for soil and vegetation in radiation transfer model
Fig.2  Simulation case at 1.4 GHz, the changing characteristic of dielectric constant as soil moisture corresponding to the Scene 1th
Fig.3  Simulation case at 1.4 GHz, the effect of dielectric models' differences on brightness temperature as soil moisture increasing, corresponding to the Scene 1th
Fig.4  Simulation case at 1.4 GHz, The effect of thermodynamic temperature on dielectric constant, corresponding to the Scene 2th
Fig.5  The ELBARA-III observed brightness temperature at 50 ° incident angle and the simulated brightness temperature based on the four dielectric models
Fig.6  Statistics of simulated brightness temperature by brightness temperature measurement against four dielectric models
Fig.7  Time series of soil moisture retrieved based on four permittivity models and observed soil moisture at 2 cm and 5 cm depth
2 cm 5 cm
土壤介电模型

RMSE

/m3·m-3

ubRMSE

/m3·m-3

bias

/m3·m-3

R2

RMSE

/m3·m-3

ubRMSE

/m3·m-3

bias

/m3·m-3

R2
TB-H Wang-Schmugge 0.052 0.045 -0.027 0.80 0.047 0.044 -0.016 0.78
Dobson 0.061 0.051 -0.036 0.78 0.057 0.052 -0.025 0.76
Four-phase 0.061 0.052 -0.035 0.79 0.058 0.054 -0.024 0.77
Mironov 0.065 0.048 -0.046 0.79 0.059 0.048 -0.034 0.77
Table 2  Statistics of soil moisture between H-polarization retrieval and measurement at 2 cm and 5 cm for different permittivity models
2 cm 5 cm
土壤介电模型

RMSE

/m3·m-3

ubRMSE

/m3·m-3

Bias

/m3·m-3

R2

RMSE

/m3·m-3

ubRMSE

/m3·m-3

Bias

/m3·m-3

R2
TB-V Wang-Schmugge 0.074 0.046 0.059 0.81 0.083 0.046 0.071 0.79
Dobson 0.076 0.045 0.063 0.84 0.088 0.048 0.074 0.82
Four-phase 0.080 0.045 0.067 0.85 0.091 0.048 0.079 0.82
Mironov 0.061 0.043 0.046 0.84 0.072 0.045 0.057 0.82
Table3  Statistics of soil moisture between V-polarization retrieval and measurement at 2 cm and 5 cm for different permittivity models
1 Seneviratne S I , Corti T , Davin E L ,et al .Investigating Soil Moisture-Climate Interactions in a Changing Climate: A Review[J].Earth Science Reviews,2010,99(3/4):125-161.
2 Wen Jun , Lan Yongchao , Su Zhongbo ,et al .Advances in Observation and Modeling of Land Surface Processes over The Soure Region of Yellow River[J].Advances in Earth Science,2011,26(6):575-585.文军,蓝永超,苏中波, 等 .黄河源区陆面过程观测和模拟研究进展[J].地球科学进展,2011,26(6):575-585.
3 Entekhabi D , Njoku E G , Neill P E O ,et al .The Soil Moisture Active Passive (SMAP) Mission[J].Proceedings of the IEEE,2010,98(5):704-716.
4 Zhao Yizhou , Ma Yaoming , Huang Zhen ,et al .The Retrieval of Soil Moistue from TRMM/ TMI Data in Central of Tibetan Plateau[J].Plateau Meteorology,2007,26(5):952-957.赵逸舟,马耀明,黄镇, 等 .利用TRMM/TMI资料反演青藏高原中部土壤湿度[J].高原气象,2007,26(5):952-957.
5 Colliander A , Jackson T J , Bindlish R ,et al .Validation of SMAP Surface Soil Moisture Products with Core Validation Sites[J].Remote Sensing of Environment,2017,191:215-231.
6 Zhao Tianjie .Passive Microwave Remote Sensing of Soil Moisture[D].Beijing:Beijing Normal University,2012.赵天杰.被动微波遥感土壤水分[D].北京:北京师范大学,2012.
7 Wigneron J P , Jackson T J , O'neill P ,et al .Modelling the Passive Microwave Signature from Land Surfaces: A Review of Recent Results and Application to the L-band SMOS & SMAP Soil Moisture Retrieval Algorithms[J].Remote Sensing of Environment,2017,192(1):238-262.
8 Wen J , Jackson T J , Bindlish R ,et al .Retrieval of Soil Moisture and Vegetation Water Content Using SSM/I Data over a Corn and Soybean Region[J].Journal of Hydrometerology,2005,6(6):854-863.
9 Mo T , Choudhury B J , Schmugge T J ,et al .A model for Microwave Emission from Vegetation-Covered Fields[J].Journal of Geophysical Research: Oceans,1982,87(C13):11229-11237.
10 Kerr Y H , Waldteufel P , Richaume P ,et al .The SMOS Soil Moisture Retrieval Algorithm[J].IEEE Transactions on Geoscience and Remote Sensing,2012,50(5):1384-1403.
11 O'Neill P , Njoku E , Jackson T ,et al .SMAP Algorithm Theoretical Basis Document: Level 2 & 3 Soil Moisture (Passive) Data Products[Z]. In:Jet Propulsion Lab., California Inst.Technol.,Pasadena, CA, USA, JPL D- 66480,2015.
12 Shi Xiaokang , Wen Jun , Wang Lei ,et al .Application of AMSR-E Brightness Temperature Data in Observation and Simulation of Soil Moisture Variation over Northeast Plateau[J].Plateau Meteorology,2010,29(3):545-553.史小康,文军,王磊, 等 .AMSR-E卫星微波亮温数据在高原东北部土壤湿度观测和模拟中的应用[J].高原气象,2010,29(3):545-553.
13 Zheng D , Wang X , Van Der Velde R ,et al .Impact of Surface Roughness, Vegetation Opacity and Soil Permittivity on L-Band Microwave Emission and Soil Moisture Retrieval in the Third Pole Environment[J].Remote Sensing of Environment,2018,209(1):633-647.
14 Jin Xiao , Yang Wen , Zhao Jianqi .Study on the Prmittivity Mixing Model of Freezing Soil[J].Journal of Glaciology and Geocryology,2018,40(3):570-579.靳潇,杨文,赵剑琦.冻结土壤介电常数混合模型机理研究[J].冰川冻土,2018,40(3):570-579.
15 Van Dam R L , Borchers B , Hendrickx J M H :Methods for Prediction of Soil Dielectric Properties[J].Proceedings of SPIE,2005,5794:188-197.
16 Wang J R , Schmugge T J .An Empirical-model for the Complex Dielectric Permittivity of Soils as a Function of Water-Content[J].IEEE Transactions on Geoscience and Remote Sensing,1980,18(4):288-295.
17 Liu Jun , Zhao Shaojie , Jiang Lingmei ,et al .Research Progress on Dielectric Constant Model of Soil at Microwave Frequency[J].Remote Sensing Information,2015,30(1):5-13.刘军,赵少杰,蒋玲梅, 等 .微波波段土壤的介电模型研究进展[J].遥感信息,2015,30(1):5-13.
18 Dobson M C , Ulaby F T , Hallikainen M T ,et al .Microwave Dielectric Behavior of Wet Soil-Part II: Dielectric Mixing Models[J].IEEE Transactions on Geoscience and Remote Sensing,1985,23(1):35-46.
19 Birchak J R , Gardner C G , Hipp J E ,et al .High Dielectric Constant Microwave Probes for Sensing Soil Moisture[J].Proceedings of the IEEE,1974,62(1):93-98.
20 Mironov V L , Dobson M C , Kaupp V H ,et al .Generalized Refractive Mixing Dielectric Model for Moist Soils[J].IEEE Transactions on Geoscience and Remote Sensing,2004,42(4):773-785.
21 Mironov V , Kerr Y , Wigneron J P ,et al .Temperature and Texture Dependent Dielectric Model for Moist Soils at 1.4 GHz[J].IEEE Geoscience and Remote Sensing Letters,2013,10(3):419-423.
22 Mironov V L , Bobrov P P , Fomin S V .Dielectric Model of Moist Soils with Varying Clay Content in the 0.04 to 26.5 GHz Frequency Range[C]//2013 International Siberian Conference on Control and Communications,Krasnoyarsk, Russia,2013.
23 Mironov V L , Kosolapova L G , Fomin S V .Physically and Mineralogically based Spectroscopic Dielectric Model for Moist Soils[J].IEEE Transactions on Geoscience and Remote Sensing,2009,47(7):2059-2070.
24 Mironova V L , Kosolapova L G , Lukin Y I ,et al .Temperature and Texture Dependent Dielectric Model for Frozen and Thawed Mineral Soils at A Frequency of 1.4 GHz[J].Remote Sensing of Environment,2017,200(1):240-249.
25 Stähli M , Stadler D .Measurement of Water and Solute Dynamics in Freezing Soil Columns with Time Domain Reflectometry[J].Journal of Hydrology,1997,195(1):352-369.
26 Schwank M , Stahli M , Wydler H ,et al .Microwave L-Band Emission of Freezing Soil[J].IEEE Transactions on Geoscience and Remote Sensing,2004,42(6):1252-1261.
27 Zheng D , Li X , Wang X ,et al .Sampling Depth of L-Band Radiometer Measurements of Soil Moisture and Freeze-thaw Dynamics on the Tibetan Plateau[J].Remote Sensing of Environment,2019,226(1):16-25.
28 Zheng D , Wang X , Van Der Velde R ,et al .L-Band Microwave Emission of Soil Freezesc-Thaw Process in the Third Pole Environment[J].IEEE Transactions on Geoscience and Remote Sensing,2017,55(9):5324-5338
29 Sun Yayong .Synergeric Inversion of Surface Soil Moisture based on C/L Band Active and Passive Microwave Remote Sensing[D].Beijing:China Institure of Water Resoure and Hydropower Research,2018.孙亚勇. 基于C和L波段主被动微波遥感的土壤水分协同反演研究[D].北京:中国水利水电科学研究院,2018.
30 Chen Zixuan .Effects of Artificial Inter-ference on Plant Diversity and Productivity in Maqu Degraded Alpine Meadow[D].Lanzhou:Gansu Agricultural University,2008.陈子萱. 人工扰动对玛曲高寒沙化草地植物多样性和生产力的影响[D].兰州:甘肃农业大学,2008.
31 Xiong Yuanqing , Wu Pengfei , Zhang Hongzhi ,et al .Dynamics of Soil Water Conservation during the Degradation Process of the Zoige Alpine Wetland[J].Acta Ecologica Sinica,2011,31(19):5780-5788.熊远清,吴鹏飞,张洪芝, 等 .若尔盖湿地退化过程中土壤水源涵养功能[J].生态学报,2011,31(19):5780-5788.
32 Schwank M , Wiesmann A , Werner C ,et al .ELBARA II an L-Band Radiometer System for Soil Moisture Research[J].Sensors,2010,10(1):584-612.
33 Zheng D , Wang X , Velde R V D ,et al .Assessment of Soil Moisture SMAP Retrievals and ELBARA-III Measurements in a Tibetan Meadow Ecosystem[J].IEEE Geoscience and Remote Sensing Letters,2019,99(1):1-5.
34 Christian M , Weber D , Max W ,et al.ELBARA ,the ETH L-Band Radiometer for Soil-Moisture Research[C]//IEEE International Geoscience & Remote Sensing Symposium.Institute of Electrical and Electronics Engineers, Toulouse, France,2003.
35 European Space Agency .SMOS Gets Help from Tibet[EB/OL].,29/01/2016,23/06/2019.
36 Pellarin T , Kerr Y H , Wigneron J .Global Simulation of Brightness Temperatures at 6.6 and 10.7 GHz over Land based on SMMR Data Set Analysis[J].IEEE Transactions on Geoscience and Remote Sensing,2006,44(9):2492-2505.
37 Campbell .CS616Water Content Reflectometer[EB/OL].,2002,27/06/2019.
38 Escorihuela M J , Chanzy A , Wigneron J P ,et al .Effective Soil Moisture Sampling Depth of L-band Radiometry: A Case Study[J].Remote Sensing of Environment,2010,114(5):995-1001.
39 Roy A , Toose P , Williamson M ,et al .Response of L-Band Brightness Temperatures to Freeze/Thaw and Snow Dynamics in A Prairie Environment from Ground-based Radiometer Measurements[J].Remote Sensing of Environment,2017,191:67-80.
40 He Y , Guo X , Wilmshurst J F .Comparison of Different Methods for Measuring Leaf Area Index in a Mixed Grassland[J].Canadian Journal of Plant Science. Revue Canadienne De Phytotechnie,2007,87(4):803-813.
41 Choudhury B J , Schmugge T J , Mo T .A Parameterization of Effective Soil Temperature for Microwave Emission[J].Journal of Geophysical Research:Oceans,1982,87(C2):1301-1304.
42 Wang J R , Choudhury B J .Remote Sensing of Soil Moisture Content over Bare Field at 1.4 GHz Frequency[J].Journal of Geophysical Research-Oceans,1981,86(NC6):5277-5282.
43 Wigneron J , Chanzy A , Kerr Y H ,et al .Evaluating An Improved Parameterization of the Soil Emission in L-MEB[J].IEEE Transactions on Geoscience and Remote Sensing,2011,49(4):1177-1189.
44 Wigneron J P , Kerr Y , Waldteufel P ,et al .L-Band Microwave Emission of the Biosphere (L-MEB) Model: Eescription and Calibration Against Experimental Data Sets over Crop Fields[J].Remote Sensing of Environment,2007,107(4):639-655.
[1] . A New Direct Solution of Range-Doppler model for SAR Image Location[J]. , , (): 0 .
[2] . Monitoring Surface Deformation in Changzhou City Using COSMO-SkyMed Data[J]. , , (): 0 .
[3] yingchun Fu. A comparative study of urban heterogeneity vegetation coverage estimation model[J]. Remote Sensing Technology and Application, 0, (): 0 .
[4] . [J]. Remote Sensing Technology and Application, 1986, 1(1): 11 -12 .
[5] . [J]. Remote Sensing Technology and Application, 1986, 1(1): 1 -7 .
[6] . [J]. Remote Sensing Technology and Application, 1986, 1(1): 8 -10 .
[7] 张仁华. [J]. Remote Sensing Technology and Application, 1987, 2(1): 25 -30 .
[8] . [J]. Remote Sensing Technology and Application, 1987, 2(1): 31 -39 .
[9] . [J]. Remote Sensing Technology and Application, 1987, 2(1): 40 -50 .
[10] . [J]. Remote Sensing Technology and Application, 1987, 2(2): 27 -24 .