Please wait a minute...
img

Wechat

Remote Sensing Technology and Application  2020, Vol. 35 Issue (3): 656-663    DOI: 10.11873/j.issn.1004-0323.2020.3.0656
    
Design of Distributed High Speed Data Acquisition System in Synthetic Aperture Radiometer
Xuning Mao1,2,3(),Hao Lu1,2,Hao Liu1,2()
1.Key Laboratory of Microwave Remote Sensing Technology, Chinese Academy of Sciences, Beijing 100190, China
2.National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
3.University of Chinese Academy of Sciences, Beijing 100049, China
Download:  HTML  PDF (3174KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

With the increasing demand of synthetic aperture radiometer for high resolution, the scale of signal acquisition channels has risen rapidly, reaching tens or even hundreds of channels. In this paper, a distributed signal sampling and processing system is proposed. At the same time, a high-speed data acquisition and transmission network based on distributed correlation system is designed, with 24 channels and 60 Msps sampling rate. On the hardware, a clock link is designed based on Distributed Multi-level distribution to realize digital synchronous sampling, and the test results show that the phase delay between channels is less than 1.5 degrees. In order to realize the high-speed optical fiber link between the multi-digital sampling array and the back-end correlation units, the Racket I/O transceiver built in the FPGA is used as the physical layer, and the test results show that the bit error rate is lower than 10-7.The system has high stability and reliability, and is suitable for requirements of large-scale synthetic aperture radiometers.

Key words:  Synthetic aperture radiometer      Distributed      High-speed optical fiber link      Synchronous sampling     
Received:  30 March 2019      Published:  10 July 2020
ZTFLH:  TP274  
Corresponding Authors:  Hao Liu     E-mail:  1520046505@qq.com;liuhao@mirslab.cn
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Xuning Mao
Hao Lu
Hao Liu

Cite this article: 

Xuning Mao,Hao Lu,Hao Liu. Design of Distributed High Speed Data Acquisition System in Synthetic Aperture Radiometer. Remote Sensing Technology and Application, 2020, 35(3): 656-663.

URL: 

http://www.rsta.ac.cn/EN/10.11873/j.issn.1004-0323.2020.3.0656     OR     http://www.rsta.ac.cn/EN/Y2020/V35/I3/656

Fig.1  The monolithic construction of the digital system
Fig.2  Clock distribution link
时钟分发器附加相位抖动(RMS)/fs时钟歪斜(skew)/ps
LMK00101306
ADCLK954759
Distribution link80.7815
Table1  Timing characteristics of clock distribution link
Fig.3  Data Acquisition control Logic
Fig.4  High speed data processing flow
Fig.5  Rocket I/O Data transfer process
Fig.6  Data transmission process based on Aurora IP core
Fig.7  Data acquisition waveform
Fig.8  Phase difference between channels
Fig.9  Data transmission simulation and BER Detection in data transmission
1 Zhang Peng, Yang Hu, Qiu Hong, et al. Quantitative Remote Sensing Application Capability of FengYun-3 Satellite [J]. Progress of Meteorological Science and Technology, 2012,2(4): 6-11.
1 张鹏,杨虎,邱红,等.风云三号卫星的定量遥感应用能力[J].气象科技进展,2012,2(4):6-11.
2 Shi J C, Dong X L, Zhao T J, et al. The Water Cycle Observation Mission (WCOM): Overview[C]// 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, 2016: 3430-3433. .
doi: 10.1109/IGARSS. 2016.7729886
3 Wu Ji, Liu Hao, Yan Jingye, et al. Interferometric Passive Microwave Imaging Technology[J]. Remote Sensing Technology and Applications, 2009, 24 (1): 1-12.
3 吴季,刘浩,阎敬业,等.干涉式被动微波成像技术[J].遥感技术与应用,2009,24(1):1-12.
4 Ryman E, Emrich A, Andersson S B, et al. 1.6 GHz Low-Power Cross-correlator System Enabling Geostationary Earth Orbit Aperture Synthesis[J]. IEEE Journal of Solid-State Circuits, 2014, 49(11): 2720-2729. .
doi: 10.1109/JSSC.2014.2354648
5 Han Donghao, Liu Hao, Wu Ji, et al. Research on Terahertz Interferometer System based on High-speed Digital Correlator [J]. Journal of Electronics and Information, 2016, 38(4): 964-969.
5 韩东浩,刘浩,吴季,等.基于高速数字相关器的太赫兹干涉仪系统研究[J].电子与信息学报,2016,38(4):964-969.
6 Chen Yibo, Yang Yuhua, Wang Hongliang, et al. Design and Implementation of High-speed Data Acquisition and Optical Fiber Transmission System[J]. Application of Electronic Technology, 2016, 42(10): 73-76.
6 陈一波,杨玉华,王红亮等.高速数据采集与光纤传输系统的设计与实现[J].电子技术应用,2016,42(10):73-76.
7 Su Xiuni. Research and Implementation of High Speed Serial Communication Interface based on RocketIO[D]. Xi'an: Xi'an University of Electronic Science and Technology, 2013.
7 苏秀妮. 基于RocketIO高速串行通信接口的研究与实现[D].西安:西安电子科技大学,2013.
8 Zhang C, Liu H, Wu J, et al. Imaging Analysis and First Results of the Geostationary Interferometric Microwave Sounder Demonstrator[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(1):207-218. .
doi: 10.1109/tgrs. 2014.2320983
9 Wu Qiongzhi, Cai Chunxia, Ding Yichen, et al. Design and implementation of 5Gsps High-speed Data Acquisition System [J]. Electronic Design Engineering, 2012, 20(1): 154-157.
9 吴琼之,蔡春霞,丁一辰等.5Gsps高速数据采集系统的设计与实现[J].电子设计工程,2012,20(1):154-157.
10 Li Qiang. Design and Implementation of High Speed and Low Bit Error Rate Transmission System based on FPGA[D]. Changsha: National University of Defense Science and Technology, 2011.
10 李强. 基于FPGA的高速低误码率传输系统的设计与实现[D].长沙:国防科学技术大学,2011.
11 Wang Chunting. Research on Key Technologies of Broadband Satellite Communication System[D]. Xi'an: Xi'an University of Electronic Science and Technology, 2010.
11 汪春霆. 宽带卫星通信系统关键技术研究[D].西安:西安电子科技大学, 2010.
12 Zhang Shoujiang, Nayan, Chen Jianchun. Interconnection of High-speed ADC and FPGA with RocketIO [J]. Computer Measurement and Control System, 2013, 21(8): 2171-2173.
12 张守将,那彦,陈建春.应用RocketIO实现高速ADC和FPGA互连[J].计算机测量与控制,2013,21(8):2171-2173.
13 David M. Synthetic Aperture Radiometer Systems[J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(12). .
doi: 10.1109/22.808964
[1] . A New Direct Solution of Range-Doppler model for SAR Image Location[J]. , , (): 0 .
[2] . An improved Hyperspectral Image Clasification Algorithm Based On Multinomial Logistic Regression[J]. Remote Sensing Technology and Application, 0, (): 0 .
[3] . [J]. Remote Sensing Technology and Application, 1986, 1(1): 13 -14 .
[4] . [J]. Remote Sensing Technology and Application, 1986, 1(1): 14 .
[5] . [J]. Remote Sensing Technology and Application, 1986, 1(1): 16 .
[6] . [J]. Remote Sensing Technology and Application, 1986, 1(1): 1 -7 .
[7] . [J]. Remote Sensing Technology and Application, 1986, 1(1): 8 -10 .
[8] . [J]. Remote Sensing Technology and Application, 1986, 1(1): 33 -34 .
[9] . [J]. Remote Sensing Technology and Application, 1986, 1(1): 35 -36 .
[10] . [J]. Remote Sensing Technology and Application, 1986, 1(1): 46 -49 .