Please wait a minute...
img

Wechat

Remote Sensing Technology and Application  2021, Vol. 36 Issue (2): 362-371    DOI: 10.11873/j.issn.1004-0323.2021.2.0362
    
Hyperspectral Estimation of Heavy Metal Pb Concentration in Vineyard Soil in Turpan Basin
Aynur Matnuri1(),Mamattursun Eziz1,2(),Marhaba Turgun1,Xinguo Li1,2
1.College of Geographical Science and Tourism,Xinjiang Normal University,Urumqi 830054,China
2.Xinjiang Laboratory of Arid Zone Lake Environment and Resources,Xinjiang Normal University,Urumqi 830054,China
Download:  HTML  PDF (3457KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

As a product of the development of modern industry and mining, soil heavy metal lead pollution has gradually invaded agricultural production and agricultural products. Hyperspectral technology has become an important method for monitoring heavy metals in soil due to its macroscopic, rapid and efficient characteristics. This study takes the Pb element of vineyard soil in Xinjiang Turpan Basin as the research object, analyzes the relationship between soil spectral reflectance data and soil Pb content under 15 spectral transformations including the original soil spectrum, and constructs a partial least square regression of soil Pb content ( PLSR) model and geographic weighted re-regression (GWR) model, comparative analysis and discussion of the feasibility of using soil hyperspectral to estimate the vineyard soil Pb content. The results show that the original spectral reflectance of the soil can effectively enhance the spectral characteristics of the vineyard soil Pb element and the estimation accuracy of the model through spectral transformation. Among them, the SRSD transformation PLSR model and GWR model have the best estimation capabilities. The GWR model is better than the PLSR model to explain the hyperspectral estimation of the heavy metal Pb content in vineyard soil. From the perspective of model stability and accuracy, in the SRSD differential transformation, the GWR model R2 is increased from 0.262 of the PLSR model to 0.866, and the RMSE is reduced by 1.009. Using GWR model can effectively improve the accuracy of estimating the Pb content of vineyard soil. This study provides a useful reference for the study of soil heavy metal pollution and soil environmental safety in Chinese vineyard bases.

Key words:  Soil      Heavy metal Pb      Hyperspectral      Spectral transformation      Turpan Basin     
Received:  15 August 2020      Published:  24 May 2021
ZTFLH:  TP79  
Corresponding Authors:  Mamattursun Eziz     E-mail:  AynurER@126.com;oasiseco@126.com
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Aynur Matnuri
Mamattursun Eziz
Marhaba Turgun
Xinguo Li

Cite this article: 

Aynur Matnuri,Mamattursun Eziz,Marhaba Turgun,Xinguo Li. Hyperspectral Estimation of Heavy Metal Pb Concentration in Vineyard Soil in Turpan Basin. Remote Sensing Technology and Application, 2021, 36(2): 362-371.

URL: 

http://www.rsta.ac.cn/EN/10.11873/j.issn.1004-0323.2021.2.0362     OR     http://www.rsta.ac.cn/EN/Y2021/V36/I2/362

Fig.1  Location of the research area and sampling sites
Fig. 2  Reflectance spectra of soil samples in vineyard soils in Turpan Basin
Fig.3  Correlations between Pb concentration and its soil reflectance of vineyard soils in Turpan Basin
光谱变换特征波段/nm相关系数估算模型R2RMSE
R721、2 391、1 6640.110、0.105、0.033Y=12.5+35X721+25.4X2391-45.5X16640.1132.590
SD1 783、1 086、721、4940.411、0.340、-0.322、0.318Y=12.7+12 389.8X1783+24 915.2X1086-11 795.9X721+41 872.7X4940.3392.236
SRFD2 246、1 661、1 168、7190.361、-0.339、-0.331、0.307Y=13.6+5 940.9X2246+6 411.5X1661-5 552.5X1168+4 487.6X7190.2702.349
SRSD1 783、1 086、494、7210.421、0.332、0.326、-0.317Y=12.6+16 272.2X1783+29 908.7X1086+37 143.1X494-11 210.5X7210.3552.208
RTSD1 783、1 642、494、565-0.442、0.345、-0.349、0.337Y=12.8-2 358X1783+2 868.5X1642-1 345.4X494-284.4X5650.3602.199
LTSD1 783、494、1 343、1 6430.429、0.334、0.325、-0.321Y=12.4+14 593.7X1783+22 075.3X494-3 973.2X1343-16 822.4X16430.3202.268
Table 1  Characteristic ban and estimation model for Pb concentration under different spectral transformation
Fig.4  Validation of Pb concentration of vineyard soil based on PLSR model
光谱变换建模集检验集
R2RMSER2RMSE
SD0.9270.8890.8361.429
SRFD0.4552.0820.7801.313
SRSD0.8991.0600.8661.305
RTSD0.7261.9010.8531.160
LTSD0.6872.1970.8281.428
Table 2  Prediction accuracy of the GWR regression model for heavy metal in vineyard soil
Fig.5  Validation of Pb concentration of vineyard soil based on GWR model
1 Chen Xiaoli, Chen Dan. Consumer Behavior Analysis of Characteristic Fruit and Forest Products—A Case of Xinjiang [J]. Rural Economy,2017(3):55-60.
1 陈晓丽, 陈彤. 特色林果产品消费者行为分析—以新疆为例[J]. 农村经济,2017(3):55-60.
2 Eziz Mamattursun , Mamut Ajigul , Mohammad Anwar , et al. Assessment of Heavy Metal Pollution and Its Potential Ecological Risks of Farmland Soils of Oasis in Bosten Lake Basin[J]. Acta Geographica Sinica, 2017, 72(9):1680–1694.
2 麦麦提吐尔逊·艾则孜, 阿吉古丽·马木提, 艾尼瓦尔·买买提, 等. 博斯腾湖流域绿洲农田土壤重金属污染及潜在生态风险评价 [J]. 地理学报, 2017, 72(9):1680–1694.
3 Wang Feilong, Wang Fumin, Hu Jinghui, et al. Estimating and Mapping Rice Yield Using UAV-Hyperspectral Imager based Relative Spectral Variates[J]. Remote Sensing Technology and Application,2020,35(2): 458-468.
3 王飞龙,王福民,胡景辉, 等.基于相对光谱变量的无人机遥感水稻估产及产量制图[J].遥感技术与应用,2020,35(2): 458-468.
4 He Junliang, Cui Junli, Zhang Shuyuan, et al. Hyperspectral Estimation of Heavy Metal Cu Content in Soil based on Partial Least Square Method[J]. Remote Sensing Technology and Application, 2019, 34(5): 998-1004.
4 贺军亮, 崔军丽, 张淑媛, 等. 基于偏最小二乘的土壤重金属铜含量高光谱估算[J]. 遥感技术与应用, 2019, 34(5): 998-1004.
5 Tan K, Ye Y Y, Du P J, et al. Estimation of Heavy Metal Concentrations in Reclaimed Mining Soils Using Reflectance Spectroscopy[J]. Spectroscopy and Spectral Analysis, 2014, 34(12): 3317-3322. doi:
doi: /10.3964/j.issn.1000-0593(2014)12-3317-06
6 Li Qiongqiong, Liu Yunlong. Soil Heavy Metals Estimation based on Hyperspectral in Urban Residential[J].Remote Sensing Technology and Application,2019,34(3):540-546.
6 李琼琼,柳云龙. 城市居民区土壤重金属含量高光谱反演研究[J]. 遥感技术与应用,2019,34(3):540-546.
7 Lian S, Jian J, Tan D J, et al. Estimate of Heavy Metals in Soil and Streams Using Combined Geochemistry and Field Spectroscopy in Wansheng Mining Area, Chongqing, China. International Journal of Applied Earth Observation and Geoinformation,2015,34:1-9. doi:
doi: /10.1016/j.jag.2014.06.013
8 Stazi S R,Antonucci F,Pallottino F,et al. Hyperspectral Visible-near Infrared Determination of Arsenic Concentration in Soil[J]. Communications in Soil Science and Plant Analysis,2014,45:2911-2920. doi:.
doi: /10.1080/00103624.2014.954716
9 Lu Jiehui. Study on Hyperspectral Estimation of Chromium Content in Soil based on Grey Relational Analysis[D]. Tai'an: Journal of Shandong Agricultural University,2019.
9 路杰晖. 基于灰色关联分析的土壤铬含量高光谱估测研究[D].泰安:山东农业大学,2019.
10 Liu M L, Liu X N, Wu L, et al. Wavelet-based Detection of Crop Zinc Stress Assessment Using Hyperspectral Reflectance[J]. Computers and Geosciences,2011,37:1254-1263. doi:.
doi: / 10.1016/j.cageo.2010.11.019
11 Jiang Zhenlan, Yang Yusheng, Sha Jinming. Application of GWR Model in Hyperspectral Prediction of Soil Heavy Metals[J]. Acta Geographica Sinica,2017,72(3):533-544.
11 江振蓝, 杨玉盛, 沙晋明. GWR模型在土壤重金属高光谱预测中的应用[J]. 地理学报,2017,72(3):533-544.
12 Wang J J, Cui L J, Gao W X, et al. Prediction of Low Heavy Metal Concentrations in Agricultural Soils Using Visible and Near-infrared Reflectance Spectroscopy[J]. Geoderma,2014, 216: 1-9. doi:.
doi: /10.1016/j.geoderma.2013.10.024
13 Jiehao Lü, Hao Ningyan, Cui Xiaolin. Inversion Model for Copper Content in Farmland of Tailing Area based on Visible-near Infrared Reflectance Spectroscopy[J]. Transactions of the Chinese Society of Agricultural Engineering,2015,31(9):265-270.
13 吕杰,郝宁燕,崔晓临.利用可见光近红外的尾矿区农田土壤Cu含量反演[J].农业工程学报,2015,31(9):265-270.
14 Shi T Z, Chen Y Y, Liu Y L, et al. Visible and Near-infrared Reflectance Spectroscopy - An Alternative for Monitoring Soil Contamination by Heavy Metals[J]. Journal of Hazardous Materials,2014,265:166-176. doi:
doi: /10.1016/j.jhazmat.2013. 11.059
15 Fotheringham A S, Brunsdon C, Charlton M. Geographically Weighted Regression—The Analysis of Spatially Varying Relationships[M]. Chichester.UK: John Wiley & Sons Inc. 2002: 42–46. doi:.
doi: / 10.1107/S0108270198099594
16 Wang Yuanfei, He Honglin. Spatial Data Analysis Method[M]. Beijing: Science Publishing House, 2007: 132-141.
16 王远飞,何洪林. 空间数据分析方法[M]. 北京: 科学出版社, 2007:132–141.
17 Qu Mingkai, Li Weidong, Zhang Chuanrong, et al. Geographically Weighted Regression and Its Application Prospect in Soil and Environmental Sciences[J]. Soils, 2014, 46(1): 15–22.
17 瞿明凯, 李卫东, 张传荣, 等. 地理加权回归及其在土壤和环境科学上的应用前景[J]. 土壤, 2014, 46(1): 15–22.
18 Liu Qiongfeng, Li Mingde, Duan Jiannan, et al. Geographically Weighted Regression Model Analysis of Factors Affecting Lead and Cadmium Content in Farmland Soils[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(3): 225–234.
18 刘琼峰, 李明德, 段建南, 等. 农田土壤铅、镉含量影响因素地理加权回归模型分析[J]. 农业工程学报, 2013, 29(3): 225–234.
19 Liu Ning. Research on the GWR Model Inversion of Heavy Metal Content in Cultivated Land Soil in Mining Areas [D]. Changsha:Changsha University of Science and Technology, 2018.
19 刘宁. 矿区耕地土壤重金属含量GWR模型反演研究[D]. 长沙:长沙理工大学, 2018.
20 Xiang M, Jiang H L, Hua T Z, et al. Zircon U-Pb Shrimp Ages from The Late Paleozoic Turpan - Hami Basin, NW China [J]. Journal of Earth Science, 2014, 25(5): 924–931. doi:.
doi: /10.1007/S12583-014-0484-9
21 Technical Rules for Monitoring of Environmental Quality of Farmland Soil: [S]. Beijing: Agricultural Press of China, 2012.
21 农田土壤环境质量监测技术规范: [S]. 北京: 中国农业出版社, 2012.
22 National Environmental Protection Agency. Soil Quality—Determination of Lead, Cadmium,[S]. Beijing: Standards Press of China, 1997.国家环境保护局土壤质量——铅、镉的测定: [S]. 北京:中国标准出版社, 1997.
23 Liu Ke, Zhao Wenji, Guo Xiaoyu, et al. Research on The Estimation of Total Nitrogen Content of Wetland Plants based on Ground-measured Spectra[J]. Spectroscopy and Spectral Analysis, 2012, 32(2): 465–471.
23 刘克, 赵文吉, 郭逍宇, 等. 基于地面实测光谱的湿地植物全氮含量估算研究[J]. 光谱学与光谱分析, 2012, 32(2): 465–471.
24 Kahal Yasenjiang , Sawuti Rukya , Kasmu Nigati , et al. Optimization Estimation of Heavy Metal Content in Soil of Open-pit Coal Mine Area based on Spectral Index[J]. Spectroscopy and Spectral Analysis, 2019, 39(8): 2486–2494.
24 亚森江·喀哈尔,茹克亚·萨吾提,尼加提·卡斯木,等. 优化光谱指数的露天煤矿区土壤重金属含量估算[J]. 光谱学与光谱分析, 2019, 39(8): 2486–2494.
25 Wang Xueshun, Qi Dawei, Huang Anmin. Research on Denoising of Wood Near Infrared Spectroscopy based on Wavelet Transform [J]. Spectroscopy and Spectral Analysis, 2009, 29(8): 2059–2062.
25 王学顺,戚大伟,黄安民. 基于小波变换的木材近红外光谱去噪研究[J]. 光谱学与光谱分析, 2009, 29(8): 2059–2062.
26 Jaber S M, Al-Qinna M I. Global and Local Modeling of Soil Organic Carbon Using Thematic Mapper Data in A Semi-arid Environment[J]. Arabian Journal of Geosciences, 2015, 8: 3159–3169. doi:
doi: / 10.1007/s12517-014-1370-6
27 Wang K, Zhang C R, Li W D, et al. Mapping Soil Organic Matter with Limited Sample Data Using Geographically Weighted Regression[J]. Journal of Spatial Science, 2014, 59: 91–106. doi:
doi: / 10.1080/14498596.2013.812024
28 Ministry of Ecological Environment. Soil Environmental Quality—Risk Control Standard for Soil Contamination of Agricultural Land, [S]. Beijing: Standards Press of China, 2018. [国家生态环境部. 土壤环境质量—农用地土壤污染风险管控标准: [S]. 北京: 中国标准出版社, 2018.]
29 Pu Ruiliang, Gong Peng. Hyperspectral Remote Sensing and Its Application[M]. Beijing: Higher Education Press, 2000: 23–46.
29 浦瑞良, 宫鹏. 高光谱遥感及其应用[M]. 北京: 高等教育出版社, 2000: 23–46.
30 Xie Xianli, Sun Bo, Hao Hongtao. Relationship between Visible-near Infrared Reflectance Spectroscopy and Heavy Metal of Soil Concentration[J]. Acta Pedologica Sinica, 2007, 44(6): 982-993.
30 解宪丽, 孙波, 郝红涛. 土壤可见光—近红外反射光谱与 重金属含量之间的相关性[J]. 土壤学报, 2007, 44(6): 982-993.
31 Mao Haitao, Huang Qinghao, Long Shunjiang, et al. Design and Experiment of Protective Blanket for Soil Salinization Control[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2015,31(17): 121-127.
31 毛海涛,黄庆豪,龙顺江,等.土壤盐渍化治理防护毯的研发及试验[J].农业工程学报,2015,31(17):121-127.
32 Yu Lei, Hong Yongsheng, Geng Lei, et al. Hyperspectral Estimation of Soil Organic Matter Content based on Partial Least Squares Regression[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(14):103-109.
32 于雷, 洪永胜,耿雷,等.基于偏最小二乘回归的土壤有机质含量高光谱估算[J]. 农业工程学报,2015,31(14):103-109.
No Suggested Reading articles found!