Please wait a minute...
img

Wechat

Remote Sensing Technology and Application  2021, Vol. 36 Issue (3): 571-580    DOI: 10.11873/j.issn.1004-0323.2021.3.0571
    
Spatial Downscaling of GPM Precipitation over the Tibetan Plateau
Xia Sheng(),Yuli Shi(),Haiyong Ding
School of Remote Sensing & Geomatics Engineering,Nanjing University of Information Science&Technology,Nanjing 210044,China
Download:  HTML  PDF (2799KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Precipitation dataset with high resolution are essential for accurate hydrology predictions and meteorology simulations over complex terrains. A regression model was built to downscale the Global Precipitation Measurement (GPM) IMERG precipitation data from 0.1° to 1 km on an annual scale, using vegetation, topography and geographical location features over the Tibetan Plateau. Then monthly precipitation data were obtained by disaggregating the annual downscaled estimates, which were calibrated with observations of local rain gauge stations. The major conclusions are summarized as follows: (1) Monthly GPM IMERG precipitation demonstrated good agreement with the rain gauge data during the period 2015 to 2017 (R2=0.79), though GPM was slightly larger than ground observations; (2) Annual downscaled precipitation improved the spatial resolution of the GPM IMERG in the study area; (3) Monthly donscaled precipitation calibrated with rain gauge data reflected detailed characteristics with better predictive performance especially in summer or in wet regions.We concluded that the model can be used to obtain precipitation data with high spatial resolution from heavy rain to light one over the areas with complex tography, which is meaning for applications in hydrology and metorology studies.

Key words:  Global Precipitation Measurement (GPM)      Downscale      Precipitation      Tibetan Plateau      Random Forest.     
Received:  17 April 2020      Published:  22 July 2021
ZTFLH:  TP75  
Corresponding Authors:  Yuli Shi     E-mail:  20171206339@nuist.edu.cn;ylshi@nusit.edu.cn
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Xia Sheng
Yuli Shi
Haiyong Ding

Cite this article: 

Xia Sheng,Yuli Shi,Haiyong Ding. Spatial Downscaling of GPM Precipitation over the Tibetan Plateau. Remote Sensing Technology and Application, 2021, 36(3): 571-580.

URL: 

http://www.rsta.ac.cn/EN/10.11873/j.issn.1004-0323.2021.3.0571     OR     http://www.rsta.ac.cn/EN/Y2021/V36/I3/571

Fig.1  Elevation of the Tibetan Plateau and distribution of rainfall stations
Fig.2  Flowchart of spatial downscaling of GPM precipitation
Fig.3  Scatter plots of the measured monthly precipitation from rain gauge stations versus the monthly estimates from GPM IMERG, and TRMM 3B43 during the study period over the Tibetan Plateau, respectively
站点名TRMMGPM平均年降水量/mm站点名TRMMGPM平均年降水量/mm
托勒0.800.81372.77同仁0.810.76357.97
海西州0.840.88357.60曲麻莱0.870.84351.03
刚察0.920.98144.00玛多0.920.87342.10
门源0.790.83257.27治多0.860.92346.53
乌兰0.860.6964.67日喀则0.950.95363.30
塔什库尔干0.050.57113.87海东0.840.84268.97
茶卡0.690.73287.07尼木0.880.92311.93
兴海0.720.75297.97泽当0.930.93398.73
安多0.710.79110.03隆子0.850.90296.57
西宁0.850.93375.53拉孜0.910.91335.50
同德0.690.79341.83江孜0.800.88274.77
恰卜恰0.650.83246.97得荣0.840.82341.13
托托河0.880.96296.17定日0.910.85243.80
伍道梁0.830.90335.20八宿0.610.76210.07
都兰0.730.7259.47帕里0.830.83399.60
那曲0.930.96226.03小灶火0.740.7731.77
Table1  32 rain gauge stations in the areas with annual precipitation less than 400 mm/a, and coefficient of determination calculated between GPM, TRMM precipitation products and ground measurements at monthly scale
Fig.4  Coefficient of determination and Bias of monthly precipitation estimates from GPM and TRMM
Fig.5  Original GPM estimates at a 0.1° resolution and downscaled annual precipitation at a 1 km resolution over the Tibetan Plateau for the years of 2015, 2016, and 2017
Fig.6  Scatter plots of the agreements between the annual precipitations of the Tibetan Plateau derived from the GPM and random Forest model for the year of 2015, 2016, and 2017, respectively
Fig.7  Downscaled precipitation at monthly scale for 2017
Fig.8  Statistic indexes for the stations used in validation
检验指标原始GPM校正前校正后
R20.590.590.60
RMSE/mm20.5320.4717.38
MAE/mm14.8814.8612.37
Bias0.240.240.08
Table 2  Downscaled, and calibrated precipitation data validated against data from independent rain gauge stations on the Tibetan Plateau for 2015~2017
1 Li S C, Zhao Z Q, Xie M M, et al. Investigating Spatial Non-stationary and Scale-dependent Relationships between Urban Surface Temperature and Environmental Factors Using Geographically Weighted Regression[J]. Environmental Modelling & Software, 2010, 25(12):1789-1800. doi:.
doi: 10.1016/j.envsoft.2010.06.011
2 Joyce R, Janowiak J E, Arkin P, et al. CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution[J]. Journal of Hydrometeorology, 2004, 5(3):487-503. doi:;2.
doi: 10.1175/1525-7541(2004)0052.0.CO
3 Adler R F, Huffman G J, Chang A, et al. The Version2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979 Present)[J]. Journal of Hydrometeorology, 2003, 4(6):1147-1167. doi:;2.
doi: 10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO
4 Mantas V M, Liu Z, Caro C, et al. Validation of TRMM Multi-satellite Precipitation Analysis(TMPA) Products in the Peruvian Andes[J]. Atmospheric Research, 2015, 163:132-145. doi:.
doi: 10.1016/j.atmosres.2014.11.012
5 Ushio T, Kachi M. Kalman Filtering Applications for Global Satellite Mapping of Precipitation (GSMaP)[J]. Satellite Rainfall Applications for Surface Hydrology, 2010:105-123. doi:.
doi: 10.1007/978-90-481-2915-7_7
6 Tang Guoqiang,Wan Wei,Zeng Ziyue, et al. An Overview of the Global Precipitation Measurement (GPM) Mission and It’s Latest Development[J]. Remote Sensing Technology and Application, 2015,30(4):607-615.
6 唐国强, 万玮, 曾子悦, 等. 全球降水测量(GPM)计划及其最新进展综述 [J]. 遥感技术与应用, 2015, 30(4):607-615.
7 Liu Yonghe, Guo Weidong, Feng Jinming, et al. A Summary of Methods for Statistical Downscaling of Meteorological Data[J]. Advances in Earth Science, 2011, 26(8):837-847.
7 刘永和, 郭维栋, 冯锦明, 等. 气象资料的统计降尺度方法综述[J]. 地球科学进展, 2011, 26(8):837-847.
8 Immerzeel W W, Rutten M M, Droogers P. Spatial Downscaling of TRMM Precipitation Using Vegetative Response on the Iberian Peninsula[J]. Remote Sensing of Environment, 2009,113(2):362-370. doi:.
doi: 10.1002/joc.4964
9 Park N W. Spatial Downscaling of TRMM Precipitation Using Geostatistics and Fine Scale Environmental Variables[J]. Advances in Meteorology,2013:1-9. doi:.
doi: 10.1155/2013/237126
10 Liu Xiaochan, Zhang Hongyan, Zhao Jianjun, et al. Spatial Downscaling of TRMM Precipitation Data based on GWR Model in Northeast China[J]. Journal of Geo-Information Science, 2015,17(9):1055-1062.
10 刘小婵, 张洪岩, 赵建军, 等. 东北地区TRMM数据降尺度的GWR模型分析[J]. 地球信息科学学报, 2015,17(9):1055-1062.
11 Yu Yuanhe, Wang Jinliang. Applicability Evaluation of TRMM3B43 Precipitation Data for Downscaling in Yunnan Province[J]. Chinese Journal of Agrometeorology, 2020, 41(9):41-52.
11 玉院和,王金亮. TRMM 3B43降水数据在云南地区的降尺度适用性评价[J]. 中国农业气象, 2020, 41(9):41-52.
12 Wei Zhiming, Yue Guanyin, Li Jia, et al. Comparison Study on Accuracies of Precipitation Data Using GPM and TRMM Product in Haihe River Basin [J]. Bulletin of Soil and Water Conservation, 2017,37(2):171-176.
12 魏志明, 岳官印, 李家, 等. GPM与TRMM降水数据在海河流域的精度对比研究[J]. 水土保持通报, 2017,37(2):171-176.
13 Kazamias A P, Sapountzis M, Lagouvardos K. Evaluation and Intercomparison of GPM-IMERG and TRMM 3B42 Daily Precipitation Products over Greece[C]∥ Fifth International Conference on Remote Sensing & Geoinformation of the Environment. Society of Photo-optical Instrumentation Engineers (SPIE) Conference Series, 2017. doi:.
doi: 10.1117/12.2279689
14 Feng Kepeng, Hong Yang, Tian Juncang, et al. Evaluating Runoff Simulation of Multi-source Precipitation Data in Small Watersheds[J]. Arid Land Geography, 2020, 43(5): 1179-1191.
14 冯克鹏, 洪阳, 田军仓, 等. 多源降水数据的小流域水文模拟效用评估[J]. 干旱区地理, 2020, 43(5): 1179-1191.
15 Liu Wenfeng, Xu Zongxue, Li Fapeng, et al. Climate Change Scenarios in the Yarlung Zangbo River Basin based on ASD Model [J]. Plateau Meteorology , 2014,33(1):26-36.
15 刘文丰,徐宗学,李发鹏, 等.基于ASD统计降尺度的雅鲁藏布江流域未来气候变化情景[J].高原气象,2014,33(1):26-36.
16 Jing W, Yang Y, Yue X, et al. A Spatial Downscaling Algorithm for Satellite-based Precipitation over the Tibetan Plateau based on NDVI, DEM, and Land Surface Temperature[J]. Remote Sensing, 2016, 8(8):655. doi:.
doi: 10.3390/rs8080655
17 Xiong Junnan, Li Wei, Liu Zhiqi, et al. Research on Downscaling of TRMM Data in the Tibetan Plateau based on GWR Model. Remote Sensing for Land & Resources, 2019, 31(4): 88-95.熊俊楠,李伟,刘志奇,等. 基于GWR模型的青藏高原地区TRMM数据降尺度研究[J]. 国土资源遥感, 2019, 31(4): 88-95.
18 Zhang S, Wang D, Qin Z , et al. Assessment of the GPM and TRMM Precipitation Products Using the Rain Gauge Network over the Tibetan Plateau[J]. Journal of Meteorological Research, 2018, 32(2):324-336. doi:
doi: 10.1007/s13351-018-7067-0
19 Li Lanhui,Liu Qionghuan, Zhang Yili, et al. Spatial Distribution and Variation of Precipitation in the Qiangtang Plateau[J].Geographical Research, 2017, 36(11): 2047-2060.
19 李兰晖, 刘琼欢, 张镱锂,等. 羌塘高原降水空间分布及其变化特征[J]. 地理研究, 2017, 36(11): 2047-2060.
20 Qi Wenwen, Zhang Baiping, Pang Yu, et al. TRMM-Data-based Spatial and Seasonal Patterns of Precipitation in the Qinghai-Tibet Plateau [J]. Scientia Geographica Sinica, 2013, 33(8):999-1005.
20 齐文文, 张百平, 庞宇, 等. 基于TRMM数据的青藏高原降水的空间和季节分布特征[J]. 地理科学, 2013, 33(8):999-1005.
21 Wilby R. L, Wigley T M L, Conway D,et al. Statistical Downscaling of General Circulation Model Output: A Comparison of Methods[J]. Water Resources Research, 34(11):2995-3008. doi:.
doi: 10.1029/98wr02577
22 Xu Ming, Shi Yuli, Wang Bin. Reconstruction of High Resolution Monthly Precipitation Data of the Tibetan Plateau[J]. Progress in Geography, 2018, 37(7):61-70.
22 徐明, 石玉立, 王彬. 高分辨率青藏高原历史月降水数据重建[J]. 地理科学进展, 2018, 37(7):61-70.
23 Duan Z , Bastiaanssen W G M. First Results from Version 7 TRMM 3B43 Precipitation Product in Combination with a New Downscaling–calibration Procedure[J]. Remote Sensing of Environment,2013,131:1-13. doi:.
doi: 10.1016/j.rse.2012. 12.002
24 Cheema M J M, Bastiaanssen W G M. Local Calibration of Remotely Sensed Rainfall from the TRMM Satellite for Different Periods and Spatial Scales in the Indus Basin[J]. International Journal of Remote Sensing, 2012, 33(8):2603-2627. doi:.
doi: 10.1080/01431161.2011.617397
25 Breiman L. Random Forests[J]. Machine Learning, 2001, 45(1):5-32.doi: .
doi: 10.1023/A:1010950718922
26 Svetnik V,Liaw A,Tong C,et al. Random Forest: A Classification and Regression Tool for Compound Classification and QSAR Modeling[J]. Journal of Chemical Information & Compu-ter Sciences,2003,43(6):1947-1958. .
doi: 10.1021/ci034160g
27 Voltz M,Webster R. A Comparison of Kriging, Cubic Splines and Classification for Predicting Soil Properties from Sample Information[J].European Journal of Soil Science,2006,41(3):473-490. doi:.
doi: 10.1111/j.1365-2389.1990.tb00080.x
28 Jia S, Zhu W, Lű A, et al. A Statistical Spatial Downscaling Algorithm of TRMM Precipitation based on NDVI and DEM in the Qaidam Basin of China[J]. Remote Sensing of Environment,2011,115(12):3069-3079. doi:.
doi: 10.1016/j.rse.2011.06. 009
29 Lu Meiqi. Analysis of the Sensitivity and Difference based on GPM/DPR Spaceborne Dual Frequency Radar for Detecting Precipitation[D].Nanjing:Nanjing University of Information Science and Technology.2017.
29 卢美圻. GPM/DPR星载双频雷达探测降水的敏感性与差异性分析[D].南京:南京信息工程大学,2017.
30 Li X, Chen Y, Wang H, et al. Assessment of GPM IMERG and Radar Quantitative Precipitation Estimation (QPE) Products Using Dense Rain Gauge Observations in the Guangdong-Hongkong-Macao Greater Bay Area[J]. China Atmospheric Research,2020,236:104834. doi:.
doi: 10.1016/j.atmosres.2019. 104834
31 Li Xiaoying, Yao Zhengyi, Xiao Jianhua, et al. Analysis of the Spatial-temporal Variation Characteristics of Precipitation over the Tibetan Plateau from 1961 through 2010 [J]. Journal of Glaciology and Geocryology, 2016, 38(5): 1233-1240.
31 李晓英, 姚正毅, 肖建华, 等. 1961~2010年青藏高原降水时空变化特征分析[J].冰川冻土, 2016, 38(5): 1233-1240.
32 Xu R, Tian F, Yang L, et al. Ground Validation of GPM IMERG and TRMM 3B42V7 Rainfall Products over Southern Tibetan Plateau based on a High-Density Rain Gauge Network[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(2):910-924. doi:.
doi: 10.1002/2016jd025418
No Suggested Reading articles found!