Please wait a minute...
img

Wechat

Remote Sensing Technology and Application  2021, Vol. 36 Issue (5): 1209-1222    DOI: 10.11873/j.issn.1004-0323.2021.5.1209
    
Typical Land Cover Impacts on Land Surface Temperature of Changsha Metropolitan Area
Junyu Guo1,2,3(),Liyun Dai2,Ji Liang1,3(),Qiong Wang1,3
1.National-Local Joint Engineering Laboratory of Geo-Spatial information Technology in the Hunan University of Science and Technology,Xiangtan 411201,China
2.Northwest Institute of Eco-Environment and Resources Institute,Chinese Academy of Sciences,Lanzhou 730000,China
3.School of resource Environment and Safety engineering,Hunan University of Science and Technology,Xiangtan 411201,China
Download:  HTML  PDF (7590KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Urban heat island is a phenomenon that the temperature of urban area is higher than suburb, which can change the natural and social process of city and causes a series of environmental problems. In this paper, Single-channel algorithm for Landsat 8 TIRS10 band (TIRS10_SC algorithm) is used to retrieval the land surface temperature of four landscape Landsat 8 images in Changsha metropolitan area in July 2013, March 2016, July 2016 and November 2016. This paper further analyzes the influence of typical land surfaces such as construction land, green land, rivers and roofs of different materials on the land surface temperature, the results indicate that: (1) The areas with high LST were located in Changsha Railway Station, the Gaoqiao Market and some factories at all times. Compared with July 2013, the heat island effect in the surrounding area of Liuyang River was alleviated in July 2016, which was mainly caused by the different weather conditions and the change of land cover nature by demolition. The largest ratio of construction land in March was moderate LST zone. The highest ratio of construction land in July was sub-high LST zone. In March and July, the highest ratio among green areas is sub-low LST zone, the largest ratio in water is low LST zone. In November, the highest ratio of construction land and green space was medium LST zone, and the sub-highest LST zone in water was the highest; (2) Within 120 m around the river, for every 30 m decrease from land to river, the average temperature of construction land decreased by 0.93~1.26 ℃ and the average temperature of green land decreased by 0.57~0.99 ℃ in July. The average temperature of construction land decreased by 0.51~0.78 ℃ and the average temperature of green land decreased by 0.3~0.57 ℃ in March. The cooling intensity of the river is related to the difference between the river temperature and LST more than 120 m away from the river; (3) Negative MNDWI is positively correlated with land surface temperature and positive MNDWI is negatively correlated with land surface temperature in March and July. However, MNDWI is positively correlated with land surface temperature in November; (4) Emissivity has a significant effect on the results of land surface temperature inversion. It is difficult to distinguish the high reflectivity roofs and other types of construction land by using NDVI to estimate emissivity. Therefore, the influence of high-reflectivity roofs on emissivity needs to be further studied to improve the inversion accuracy of land surface temperature and provide a reference for mitigating the urban heat island effect.

Key words:  Land Surface Temperature      River      MNDWI      Emissivity     
Received:  15 April 2020      Published:  08 December 2021
ZTFLH:  X16  
Corresponding Authors:  Ji Liang     E-mail:  jyguo12@163.com;leung@lzb.ac.cn
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Junyu Guo
Liyun Dai
Ji Liang
Qiong Wang

Cite this article: 

Junyu Guo,Liyun Dai,Ji Liang,Qiong Wang. Typical Land Cover Impacts on Land Surface Temperature of Changsha Metropolitan Area. Remote Sensing Technology and Application, 2021, 36(5): 1209-1222.

URL: 

http://www.rsta.ac.cn/EN/10.11873/j.issn.1004-0323.2021.5.1209     OR     http://www.rsta.ac.cn/EN/Y2021/V36/I5/1209

Fig.1  Top 5 provincial capital cities in China for cumulative high temperature days from 2011 to 2019
Fig.2  Research region of Changsha main urban area
日期11时气温日期11时气温
2013-07-3135.6℃2016-07-2332.8℃
2016-03-0116.1℃2016-11-2812.7℃
Table 1  Changsha meteorological station observation data
大气模式水汽含量大气透过率估算公式
中纬度夏季大气0.2~2.0τ10=0.7029-0.0620w
2.0~5.6τ10=0.9220-0.0780w
5.6~6.8τ10=0.5422-0.0735w
中纬度冬季大气0.2~1.4τ10=0.9228-0.0735w
Table 2  Estimation of atmospheric transmittance for the Landsat 8
大气模式大气平均作用温度估算方程
中纬度夏季Ta=16.0110+0.92621?T0
中纬度冬季Ta=19.2704+0.91118?T0
Table 3  Estimation of atmospheric mean operating temperature
热岛强度等级温度范围
低温Tni<Tmean-1.5S
次低温Tmean-1.5STni<Tmean-0.5S
中温Tmean-0.5STni<Tmean+0.5S
次高温Tmean+0.5STni<Tmean+1.5S
高温Tni>Tmean+1.5S
Table 4  The classification criteria of urban heat island intensity
水体绿地裸地建设用地
2013-07-31388011143
2016-03-0138739152
2016-07-2338748152
2016-11-2838698157
Table 5  Statistical table of random point land cover types
Fig.3  Distribution of random points
日期总体分类精度/%Kappa系数
2013-07-3191.35730.8648
2016-03-0195.69120.9342
2016-07-2394.84850.9212
2016-11-2893.92050.9067
Table 6  Evaluation results of classification accuracy of land cover
Fig.4  Classification results of land cover
Fig.5  Division results of Urban heat island grading
日期河流河流温度/℃河流宽度/m
2013-07-31湘江27.71896
浏阳河30.77132
捞刀河30.67121
2016-03-01湘江15.38892
浏阳河18.30124
捞刀河17.84120
2016-07-23湘江26.87988
浏阳河28.46179
捞刀河29.03167
2016-11-28湘江16.59898
浏阳河15.84131
捞刀河15.28120
Table 7  Statistical table of river temperature and width
Fig.6  Histogram Statistics of Land Surface Temperature
历史日期最高温最低温历史日期最高温最低温
20130729372920160228228
20130730382920160229197
201307313930201603012110
20160721352820161126103
20160722362920161127144
20160723372920161128155
Table 8  Temperature Statistics on Historical Dates
热岛分级2013-07-312016-03-01
建设用地绿地水体裸地建设用地绿地水体裸地
低温0.066.8765.131.850.411.5969.641.24
次低温4.0856.1830.453.586.5653.4123.0810.14
中温33.5832.853.8243.3844.0241.456.2955.97
次高温52.944.070.4848.2639.623.410.9730.85
高温9.340.030.112.939.390.130.021.80
热岛分级2016-07-232016-11-28
建设用地绿地水体裸地建设用地绿地水体裸地
低温0.153.8664.101.663.385.510.681.93
次低温5.7158.3129.383.2217.0538.189.667.52
中温36.2931.635.5656.4340.7850.4621.7437.45
次高温46.126.010.8436.8328.965.5067.8248.44
高温11.730.190.131.869.840.360.104.66
Table 9  The proportion of urban heat island grading in various land cover area
Fig.7  Buffer zone LST and the proportion of construction land
日期

缓冲区120 m内

地表平均温度

湘江浏阳河捞刀河
拟合公式R2拟合公式R2拟合公式R2
2013-07-31建设用地平均温度y1=30.04+0.042x0.984y1=31.06+0.044x0.994y1=31.08+0.035x0.980
绿地平均温度y2=29.26+0.024x0.991y2=30.64+0.03x0.986y2=30.39+0.021x0.992
2016-03-01建设用地平均温度y1=17.77+0.026x0.989y1=18.67+0.022x0.988y1=18.20+0.017x0.995
绿地平均温度y2=17.25+0.016x0.981y2=18.20+0.015x0.968y2=16.54+0.019x0.934
2016-07-23建设用地平均温度y1=28.85+0.031x0.982y1=29.18+0.033x0.992y1=29.06+0.032x0.979
绿地平均温度y2=27.54+0.023x0.991y2=28.35+0.033x0.982y2=28.99+0.019x0.976
Table 10  Correlation between buffer distance and LST in different land cover types
Fig.8  Correlation between LST and MNDWI
Fig.9  Table 11 Distribution of surface temperature, radiant brightness and emissivity of roofs with different materials Adjustment of emissivity and corresponding surface temperature changes
地表比辐射率地表温度/℃增加量/℃地表比辐射率地表温度/℃增加量/℃地表比辐射率地表温度/℃增加量/℃
0.96-6.310.91-3.860.510.86-1.130.57
0.95-5.840.470.9-3.340.520.85-0.550.58
0.94-5.360.480.89-2.810.530.840.050.60
0.93-4.870.490.88-2.260.550.830.660.61
0.92-4.370.500.87-1.710.560.821.290.63
Table 11  Adjustment of emissivity and corresponding surface temperature changes
1 Ji Chongping, Liu Weidong, Xuan Chunyi. Impact of urban growth on the Heat Island in Beijing[J]. Chinese Journal of Geophysics, 2006(1):69-77.
1 季崇萍,刘伟东,轩春怡.北京城市化进程对城市热岛的影响研究[J].地球物理学报,2006(1):69-77.
2 Ge Weiqiang, Zhou Hongmei, Yang Yinming, et al. The study of city green reducing Thermal Island Effect based on RS and GIS[J]. Remote Sensing Technology and Application,2006,21(5):432-435.
2 葛伟强,周红妹,杨引明,等.基于遥感和GIS的城市绿地缓解热岛效应作用研究[J].遥感技术与应用,2006,21(5):432-435.
3 Hu Hualang, Chen Yunhao, Gong Adu. Advances in the application of remotely sensed date to the study of Urban Heat Island[J]. Remote Sensing for Land & Resources,2005(3):5-9,13.
3 胡华浪,陈云浩,宫阿都.城市热岛的遥感研究进展[J].国土资源遥感,2005(3):5-9,13.
4 Xiao Rongbo, Ouyang Zhiyun, Li Weifeng, al et, A review of the eco-environmental consequences of Urban Heat Islands[J]. Acta Ecologica Sinica ,2005,25(8):2055-2060.
4 肖荣波,欧阳志云,李伟峰,等.城市热岛的生态环境效应[J].生态学报,2005,25(8):2055-2060.
5 Xiao Rongbo, Ouyang Zhiyun, Zhang Zhaoming, et al. Advances in methodology of Urban Heat Island[J]. Meteorological Monthly,2005(11):4-7.
5 肖荣波,欧阳志云,张兆明,等. 城市热岛效应监测方法研究进展[J].气象,2005(11):4-7.
6 Ye Ke, Qin Zhihao. A Study of Urban Heat Island in summer of Nanjing based on MODIS data[J]. Remote Sensing Technology and Application, 2006,21(5):426-431.
6 叶柯,覃志豪.基于MODIS数据的南京市夏季城市热岛分析[J].遥感技术与应用,2006,21(5):426-431.
7 Yang Yingbao, Su Weikang, Jiang Nan. Time-space character analysis of Urban Heat Island effect in Nanjing City using remote sensing[J]. Remote Sensing Technology and Application, 2006,21(6):488-492,479.
7 杨英宝,苏伟忠,江南.南京市热岛效应时空特征的遥感分析[J].遥感技术与应用,2006,21(6):488-492,479.
8 Zhang Yong, Yu Tao, Gu Xingfa, et al. Land surface temperature retrieval from CBERS-02 IRM SS thermal infrared data and its applications in quantitative analysis of Urban Heat Island effect[J]. Journal of Remote Sensing,2006,10(5):789-797.
8 张勇,余涛,顾行发,等.CBERS-02 IRMSS热红外数据地表温度反演及其在城市热岛效应定量化分析中的应用[J].遥感学报,2006,10(5):789-797.
9 Wang Jiankai,Wang Kaicun,Wang Pucai.Urban Heat(or Cool) Island over Beijing from MODIS land surface temperature[J]. Journal of Remote Sensing,2007,11(3):330-339.
9 王建凯,王开存,王普才.基于MODIS地表温度产品的北京城市热岛(冷岛)强度分析[J].遥感学报,2007,11(3):330-339.
10 Wang Meiya, Xu Hanqiu, Li Xia, et al. Analysis on spatiotemporal variation of Urban Impervious Surface and its influence on Urban Thermal Environment: Fuzhou City,China[J].Journal of Basic Science and Engineering,2018,26(6):1316-1326.
10 王美雅,徐涵秋,李霞,等. 不透水面时空变化及其对城市热环境影响的定量分析——以福州市建成区为例[J].应用基础与工程科学学报,2018,26(6):1316-1326.
11 Wang Meiya, Xu Hanqiu, Fu Wei, et al. Spatio-temporal variation of Urban Surface Water and its influence on Urban Thermal Environment[J]. Scientia Geographica Sinica,2016,36(7):1099-1105.
11 王美雅,徐涵秋,付伟,等. 城市地表水体时空演变及其对热环境的影响[J].地理科学,2016,36(7):1099-1105.
12 Chen Yanhong, Cai Yuanbin, Tong Chuan. Temperature effect under the green space evolution based on remote sensing: a case study of Fuzhou, China[J].Acta Ecologica Sinica,2020,40(7):1-13.
12 陈燕红,蔡芫镔,仝川.基于遥感的城市绿色空间演化过程的温度效应研究——以福州主城区为例[J].生态学报,2020,40(7):1-13].
13 Liu Xuemei,Gao Xiaohong,Jia Wei. Spatio-temporal change of Urban Heat Island effect in Xining from landsat image[J]. Journal of Earth Environment,2019,10(2):166-176.
13 刘雪梅,高小红,贾伟.基于遥感影像的近30年西宁市热岛效应时空变化[J].地球环境学报,2019,10(2):166-176.
14 Zhang Qifei,Wen Ya,Wu Zhifeng,et al. Seasonal variations of the Cooling Effect of Water landscape in high-density Urban built-up area: A case study of the denter urban district of Guangzhou[J]. Ecology and Environmental Sciences,2018,27(7): 1323-1334.
14 张棋斐,文雅,吴志峰,等.高密度建成区湖泊水体的热缓释效应及其季相差异——以广州市中心城区为例[J].生态环境学报,2018,27(7):1323-1334.
15 Nie Chong, Yang Jun, Huang Conghong. Analysis of the regulation effect of surface water bodies in urban Beijing on its thermal environment[J]. Journal of Basic Science and Engineering,2019,27(6):1258-1268.
15 聂冲,杨军,黄从红.北京城区地表水体对城市热环境的调节作用分析[J].应用基础与工程科学学报,2019,27(6):1258-1268.
16 Li Xiaoyong, Kuang Wenhui. The effects of urban land cover composition and structure on land surface temperature in Beijing,Tianjin,and Shijiazhuang[J]. Chinese Journal of Ecology,2019,38(10):3057-3065.
16 李孝永,匡文慧.北京、天津和石家庄城市地表覆盖组分与结构特征对地表温度的影响[J].生态学杂志,2019,38(10):3057-3065.
17 Lin Zhongli, Xu Hangqiu. Comparative Study on the Urban Heat Island effect in “Stove Cities” during the last 20 years[J]. Remote Sensing Technology and Application, 2019, 34(3):521-530.
17 林中立, 徐涵秋. 近20年来新旧“火炉城市”热岛状况对比研究[J]. 遥感技术与应用, 2019, 34(3): 521-530.
18 Ma Jing, Wang Qingmei, Ji Mengda, et al. Remote sensing analysis of Heat Island effect in Changchun city[J]. Science of Surveying and Mapping,2019,44(8):61-69.
18 马晶,王青妹,纪梦达,等.长春市城区热岛效应遥感分析[J].测绘科学,2019,44(8):61-69.
19 Xia Junshi, Du Peijun, Zhanghairong, et al. The Quantitative relationship between land surface temperature and land cover types based on remotely sensed data[J]. Remote Sensing Technology and Application, 2010,25(1):15-23.
19 夏俊士,杜培军,张海荣,等. 基于遥感数据的城市地表温度与土地覆盖定量研究[J].遥感技术与应用,2010,25(1):15-23.
20 Bai Yang, Wang Min, Meng Hao, et al. Relationship between land surface temperature and land cover in rapid urbanization process of Shanghai[J]. Environmental Pollution & Control, 2013,35(6):49-54,
20 77[白杨,王敏,孟浩,等.上海市快速城市化过程中地表温度与地表覆盖的关系研究[J].环境污染与防治,2013,35(6):49-54,77.]
21 Liang Baoping, Ma Yifang, Li Hui. Research on cooling effect of the landscape green space and urban water in Guilin City[J].Ecology and Environmental Sciences, 2015, 24(2): 278-285.
21 梁保平,马艺芳,李晖.桂林市典型园林绿地与水体的降温效应研究[J].生态环境学报,2015,24(2):278-285.
22 Zhou Yi, Qi Hua. The Spatio-temporal pattern and change of Urban Heat Island in Chengdu based on Landsat 8[J]. Geomatics World,2019,26(2):7-12,20.
22 周毅,齐华.基于Landsat 8的成都市城市热岛时空格局变化研究[J].地理信息世界,2019,26(2):7-12,20.
23 Situ Yanna. Study on thermal environment effect of urban water body in Guangzhou[D]. Guangzhou:Sun Yat-sen University,2017.
23 司徒艳娜. 广州市城市水体的热环境效应研究[D].广州:中山大学,2017.
24 Tian Pengfei, Cai Najia, Zhang Ling, et al. Correlation analysis on Urban Heat Island effect and land surface parameters & study on effect of water on Urban Heat Island[J]. Modern Agricultural Science and Technology,2013(13):232-235.
24 田鹏飞,蔡娜佳,张玲,等.热岛效应与地表参数的相关性分析及水体对热岛的影响研究[J].现代农业科技,2013(13):232-235.
25 Li Donghai, Ai Bin, Li Xia. Urban water body alleviating Heat Island effect based on RS and GIS: A Case Study of Dongguan City[J]. Tropical Geography,2008,28(5):414-418.
25 李东海,艾彬,黎夏.基于遥感和GIS的城市水体缓解热岛效应的研究——以东莞市为例[J].热带地理,2008,28(5):414-418.
26 Lin Hao, Niu Jiqiang, Ma Huiqin, et al. Urban water body reduce of Heat Island Effect: A case study of Nanjing city[J]. Journal of Xinyang Normal University(Natural Science Edition),2017,30(2):234-238.
26 林昊,牛继强,马会钦,等.城市水体对热岛的消减效应——以南京市为例[J].信阳师范学院学报(自然科学版),2017,30(2):234-238.
27 Yue Wenze, Xu Lihua. Thermal environment effect of urban water landscape[J]. Acta Ecologica Sinica, 2013,33(6):1852-1859.
27 岳文泽,徐丽华.城市典型水域景观的热环境效应[J].生态学报,2013,33(6):1852-1859.
28 Zeng Suping, Shi Zhuo, Zhao Meifang, et al.The fariation of buffer performance of water bodies on Urban Heat Island along riverbank distance[J]. Acta Ecologica Sinica.2020,40(15):5190-5202.曾素平,时琢,赵梅芳,等.城市水体对热岛的缓冲性能沿河岸距离的变化规律[J].生态学报,2020,40(15):5190-5202
29 Le Tongchao, Nie Sen, Pan Hui, et al. Land surface temperature retrieval and Urban Heat Island effect based on Landsat 8 image in Fuzhou city[J]. Journal of Northwest Forestry University,2019,34(5):154-160.
29 乐通潮,聂森,潘辉,等.基于Landsat 8卫星影像的地表温度反演及福州春季城市热岛效应分析[J].西北林学院学报,2019,34(5):154-160.
30 Yuan Zhen, Wu Xiangli, Zang Shuying, et al. Cooling effect of green patche based on TM image in Harbin downtown city[J]. Scientia Geographica Sinica,2017,37(10):1600-1608.
30 袁振, 吴相利, 臧淑英,等.基于TM影像的哈尔滨市主城区绿地降温作用研究[J]. 地理科学,2017,37(10):1600-1608.
31 Xiong Ying, Zhang Fang. Thermal environment effects of urban human settlements and influencing factors based on multi-source data: A case study of Changsha city[J]. Acta Geographica Sinica,2020,75(11):2443-2458.
31 熊鹰,章芳.基于多源数据的长沙市人居热环境效应及其影响因素分析[J].地理学报,2020,75(11):2443-2458.
32 Ye Yü, Qin Jianxin, Hu Shunshi. Spatial-temporal evolution of Urban Heat Island Effects in Changsha city[J]. Journal of Geo-information Science, 2017,19(4):518-527.
32 叶钰,秦建新,胡顺石.长沙市热岛效应时空特征变化研究[J].地球信息科学学报,2017,19(4):518-527.
33 He Bingwei, Han Qinzhe. Study on urban thermal environment effect of Changsha based on Landsat 8 OLI/TIRS Image[J]. Hubei Agricultural Sciences,2020,59(11):69-75,80.
33 何炳伟,韩沁哲. 基于Landsat-8 OLI/TIRS 影像的长沙市城市热环境效应研究[J].湖北农业科学,2020,59(11):69-75,80.
34 Wang Z, Liu M, Liu X, et al. Spatio-temporal evolution of surface Urban Heat Islands in the Chang-Zhu-Tan urban agglomeration[J]. Physics and Chemistry of the Earth.2020,117:102865. DOI: .
doi: 10.1016/j.pce.2020.102865
35 Changsha Municipal People's Government. Brief Introduction of Changsha[EB/OL]..[2019-05-19].
35 长沙市人民政府.走进快乐长沙[EB/OL]..[2019-05-19.
36 Hu Deyong, Qiao Kun, Wang Xingling, et al. Land surface temperature retrieval from Landsat 8 thermal infrared data using mono-window algorithm[J]. Journal of Remote Sensing, 2015, 19(6): 964-976.
36 胡德勇,乔琨,王兴玲,等. 单窗算法结合Landsat 8热红外数据反演地表温度[J]. 遥感学报, 2015, 19(6): 964-976.
37 Wang F, Qin Z, Song C, et al. An Improved mono-window algorithm for Land Surface Temperature retrieval from Landsat 8 thermal infrared sensor data[J].Remote Sensing, 2015,7:4268-4289.DOI: .
doi: 10.3390/rs70404268
38 Qin Zhihao, Li Wenjuan, Xu Bin, et al. The estimation of land surface emissivity for Landsat TM6[J].Remote Sensing for Land and Resources, 2004(3): 28-32,36-41,74.
38 覃志豪,李文娟,徐斌,等.陆地卫星TM6波段范围内地表比辐射率的估计[J]. 国土资源遥感,2004(3):28-32,36-41,74.
39 Sobrino J A, Jiménez-Munoz J C, Sòria G, et al. Land surface emissivity retrieval from different VNIR and TIR sensors[J].IEEE Transactions on Geoscience and Remote Sensing, 2008, 46:316-327. DOI: .
doi: 10.1109/TGRS.2007.904834
40 Deng Shubin, Cheng Qiujin, Du Huijian, et al. ENVI remote sensing image processing method (2nd Edition)[M]. Beijing: Higher Education Press,2014.邓书斌,陈秋锦,杜会建,等.ENVI遥感图像处理方法(第二版)[M]. 北京:高等教育出版社, 2014.
41 Han Ling, Zhang Yu, Wang Xiaofeng, et al. Land use change and Heat Island effect in Xi’an city[M]. Beijing: Science Press.2018.韩玲,张瑜,王晓峰,等.西安市土地利用变化及热岛效应[M]. 北京:科学出版社,2018.
42 Qiao Zhi, Huang Ningyu, Xu Xinliang, et al. Spatio-temporal pattern and evolution of the urban thermal landscape in metropolitan Beijing between 2003 and 2017[J]. Acta Geographica Science,2019,74(3):475-489.
42 乔治,黄宁钰,徐新良,等. 2003~2017年北京市地表热力景观时空分异特征及演变规律[J].地理学报,2019,74(3):475-489.
43 Xun Hanqiu. A study on information extraction of water body with the Modified Normalized Difference Water Index (MNDWI)[J].Journal of Remote Sensing, 2005,9(5):589-595.
43 徐涵秋.利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报, 2005,9(5):589-595.
No Suggested Reading articles found!