Please wait a minute...
img

Wechat

Remote Sensing Technology and Application  2021, Vol. 36 Issue (6): 1311-1320    DOI: 10.11873/j.issn.1004-0323.2021.6.1311
    
Accuracy Evaluation of Remote Sensing Elevation Data in Alpine Mountains based on Airborne LiDAR
Huan Zhang1,2(),Hongyi Li1(),Haojie Li1,2,Tao Che1,3
1.Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China
2.University of Chinese Academy of Sciences,Beijing 100049,China
3.Chinese Academy of Sciences Heihe Remote Sensing Station,Lanzhou 730000,China
Download:  HTML  PDF (3127KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Remote sensing is an essential means to obtain DEM data in areas lacking information. However, due to the scarcity of field elevation measurements in alpine mountains, it is difficult to verify multi-source remote sensing DEM data uniformly. New remote sensing elevation data such as ICESAT-2 also lack the corresponding accuracy evaluation in alpine mountainous areas. To solve this problem, we take the Binggou Basin on the northeast margin of the Tibetan plateau as the research area. Applying the wide range of LiDAR DEM data acquired by airborne airborne remote sensing to the new product ICESAT-2 ATL06, ALOS DEM 12.5 m, the new version of SRTM V3 and ASTER GDEM were verified, and the relationship between terrain factor and RMSE was analyzed. The results show that ICESat-2 ATL06 can reach 0.747 m in RMSE in alpine mountains. Because of its high precision, it can be used to verify other remote sensing elevation in the data shortage area. The accuracy of other remote sensing elevation is relatively low. The RMSE of ALOS 12.5 m data is 5.284 m. RMSE of ASTER GDEM V3 version is 9.903 m. The five kinds of remote sensing elevation data used in this study have a high correlation with airborne LiDAR DEM, with the correlation coefficient between 0.997 and 1.000. Our study also reveals that slope is the main factor affecting the accuracy of remote sensing DEM. Except ICESat-2 ATL06, RMSE of other elevation data decreases first and then increases with the increase of slope, and there is an optimal slope value for all of them. In view of the typical characteristics of the alpine mountains on the Tibetan plateau, the verification conclusions of multi-source remote sensing DEM data in this region are representative, which can provide an important knowledge supplement for the application and evaluation of laser remote sensing DEM data in similar areas.

Key words:  Remote sensing elevation measurement      ICESat-2      LiDAR      DEM      Alpine region     
Received:  20 October 2020      Published:  26 January 2022
ZTFLH:  K90  
Corresponding Authors:  Hongyi Li     E-mail:  zhanghuan192@mails.ucas.ac.cn;lihongyi@lzb.ac.cn
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Huan Zhang
Hongyi Li
Haojie Li
Tao Che

Cite this article: 

Huan Zhang,Hongyi Li,Haojie Li,Tao Che. Accuracy Evaluation of Remote Sensing Elevation Data in Alpine Mountains based on Airborne LiDAR. Remote Sensing Technology and Application, 2021, 36(6): 1311-1320.

URL: 

http://www.rsta.ac.cn/EN/10.11873/j.issn.1004-0323.2021.6.1311     OR     http://www.rsta.ac.cn/EN/Y2021/V36/I6/1311

Fig.1  DEM made from LIDAR dataset of the BingGou basin
DEM数据LiDAR DEMICESat-2 ATL06ALOS DEM 12.5 mSRTM V3ASTER GDEM
传感器ALS70ATLASPALSARSRTMASTER
获取时间20142018~20192006~201120002019
空间分辨率/m12012.53030
参考椭球WGS84WGS84WGS84WGS84/EGM96WGS84/EGM96
投影方式UTM投影UTM投影UTM投影UTM投影UTM投影
数据格式Geo TiffHDF5Geo TiffHGTGeo Tiff
覆盖范围冰沟流域90oN~90oS80oN~80oS60oN~56oS83oN~83oS
Table 1  Introduction to various DEM data
Fig.2  Data processing flow chart
Fig.3  Elevation registration check chart
Fig.4  Scatter diagram and linear regression diagram, histogram of elevation difference distribution (From left to right, top to bottom, ICESat-2 ATL06, 2009 and 2010 ALOS DEM, SRTM V3, ASTER GDEM)
ICESat-2 ATL06/m2009 ALOS/m2010 ALOS/mSRTM V3/mASTER GDEM/m
Mean-0.0451.3730.8431.1881.626
RMSE0.7475.7545.2847.6249.903
SD0.7465.5885.2167.5319.768
Table 2  Multi-source DEM accuracy statistical table
Fig.5  Root Mean Square Error of five elevation data varies with slope (the red box represents the best slope)
1 Farr T G, Rosen P A, Caro E, et al. The shuttle radar topography mission[J]. Reviews of Geophysics, 2007, 45(2): 1-33.
2 Mudd S M. Topographic data from satellites[J]. Developments in Earth Surface Processes, 2020, 23:91-128.
3 NASA JPL. NASA shuttle radar topography mission global 1 arc second[DB/OL]. 2013, Distributed by NASA EOSDIS Land Processes DAAC,DOI:.
doi: org/10.5067/MEaSUREs/SRTM/SRTMGL1.003. Accessed 2020-02-21
4 NASA/METI/AIST/JSpacesystems apan, U.S./Japan ASTER Science Team. ASTER Global digital elevation model V003[DB/OL]. DOI:org/10.5067/ASTER/ASTGTM.003, 2019,distributed by NASA EOSDIS Land Processes DAAC, Accessed 2020-07-5.
5 DAAC ASF. ALOS PALSAR_Radiometric_Terrain _Corrected_low_res; Includes Material © JAXA/METI 2007[DB/OL]. Accessed through ASF DAAC 11 November2015, DOI:.
doi: org/10.5067/JBYK3J6HFSVF
6 Tadono T, Ishida H, Oda F, et al. Precise Global DEM Generation by ALOS PRISM[J]. Remote Sensing and Spatial Information Sciences.2014:2-4. DOI:.
doi: 10.5194/isprsannals-II-4-71-2014
7 ADIV, BAAS.TanDEM-X DEM:Comparative performan-ce review employing LiDAR data and DSMs[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2020,160:33-50. DOI:.
doi: org/10.1016/j.isprsjprs.2019.11.015
8 Phan V H, Lindenbergh R, Menenti M. ICESat derived elevation changes of Tibetan lakes between 2003 and 2009[J]. International Journal of Applied Earth Observation & Geoinformation, 2012, 17:12-22.
9 Satge F, Denezine M, Pillco R, et al. Absolute and relative height-pixel accuracy of SRTM-GL1 over the South American Andean Plateau[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 121: 157-166.
10 National A, Space A. ASTER GDEM dataset in Heihe River Basin(2009)[DB/OL].National Tibetan Plateau Data Center,2013.National A, Space A. 黑河流域ASTER GDEM数据集(2009)[DB/OL]. 国家青藏高原科学数据中心, 2013.
11 Guo Xiaoyi, Zhang Hongyan, Zhang Zhengxiang, et al. Comparative analysis of the quality and accuracy between ASTER-GDEM and SRTM3[J]. Remote Sensing Technology and Application , 2011, 26(3):334-339.
11 郭笑怡, 张洪岩, 张正祥,等. ASTER-GDEM与SRTM3数据质量精度对比分析[J]. 遥感技术与应用, 2011, 26(3):334-339.
12 Wu Yuxin, Zhao Mudan, Gao Zhiyuan, et al.Comparison analysis of accuracy of SRTMGL1 and SRTM V4 in Three Typical Regions of China[J]. Research of Soil and Water Conservation, 2019, 26(4):36-42.
12 吴宇鑫, 赵牡丹, 高志远,等. 中国3类典型区SRTMGL1和SRTM V4精度对比分析[J]. 水土保持研究, 2019, 26(4):36-42.
13 Zhang K, Gann D, Ross M, et al. Accuracy assessment of ASTER, SRTM, ALOS, and TDX DEMs for Hispaniola and implications for mapping vulnerability to coastal flooding[J]. Remote Sensing of Environment, 2019, 225:290-306.
14 Zhao Shangmin, Cheng Weiming, Jiang Jingtian, et al. Error comparison among the DEM datasets made from ZY-3 satellite and the global open datasets[J]. Journal of Geo-information Science, 2020,22(3):370-378.
14 赵尚民, 程维明, 蒋经天,等. 资源三号卫星DEM数据与全球开放DEM数据的误差对比[J]. 地球信息科学学报, 2020,22(3):370-378.
15 Claudia, C, Carabajal. ICESat validation of SRTM C-band digital elevation models[J]. Geophysical Research Letters, 2005,32(22):023957. DOI:.
doi: org/10.1029/2005GL023957
16 Neumann T A, Martino A J, Markus T, et al. The ice, cloud, and Land Elevation Satellite - 2 Mission: a global geolocated photon product derived from the advanced topographic laser altimeter system[J]. Remote Sensing of Environment, 2019:233. DOI:.
doi: org/10.1016/j.rse.2019.111325
17 Zhang G, Chen W, Xie H. Tibetan Plateau's lake level and volume changes from NASA's ICESat/ICESat‐2 and Landsat missions[J]. Geophysical Research Letters,2019, 46(22):085032. DOI:.
doi: org/10.1029/2019GL085032
18 Narine L L, Popescu S, Neuenschwander A, et al. Estimating aboveground biomass and forest canopy cover with simulated ICESat-2 data[J]. Remote Sensing of Environment, 2019, 224: 1-11.
19 Wang C, Zhu X, Nie S, et al. Ground elevation accuracy verification of ICESat-2 data: a case study in Alaska, USA[J]. Optics Express, 2019, 27(26): 38168-38179.
20 Xu Chunhai, Li Zhongqin, Wang Feiteng, et al. Estimation of mass balance of Shiyi Glacier in the Heihe River Basin, Qilian mountains during 2000-2012 based on LiDAR and SRTM[J]. Journal of Natural Resources,2017,32(1):88-100.
20 徐春海, 李忠勤, 王飞腾, 等. 基于LiDAR、SRTM DEM的祁连山黑河流域十一冰川2000—2012年物质平衡估算[J]. 自然资源学报,2017,32(1):88-100.
21 Li Hongyi, Wang Jian, Bai Yunjie, et al. The Snow hydrological processes during a representative snow cover period in Binggou Watershed in the upper reaches of Heihe River[J]. Journal of Glaciology and Geocryology, 2009,31(2):293-300.
21 李弘毅,王建,白云洁,等. 黑河上游冰沟流域典型积雪期水文情势[J]. 冰川冻土,2009,31(2):293-300.
22 Li Xin, Liu Shaomin, Ma Mingguo, et al. Overall design of the combined remote sensing test for ecological and hydrological processes in Heihe River Basin[J]. Advances in Earth Science,2012,27(5):481-498.
22 李新, 刘绍民, 马明国, 等. 黑河流域生态—水文过程综合遥感观测联合试验总体设计[J]. 地球科学进展,2012,27(5):481-498.
23 Brunt K M, Neumann T A, Smith B E. Assessment of ICESat‐2 Ice sheet surface heights, based on comparisons over the interior of the antarctic ice sheet[J]. Geophysical Research Letters,2019,46(22):13072-13078.
24 Nuth C, Kaab A. Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change[J]. Cryosphere,2011,5(1):271-290.
25 Wan Jie, Liao JingJuan, Xu Tao, et al. Accuracy evaluation of SRTM data based on ICESat/GLAS altimeter data: a case study in the Tibetan Plateau[J]. Remote Sensing for Land and Resources, 2015, 27(1):100-105.
25 万杰, 廖静娟, 许涛,等. 基于ICESat/GLAS高度计数据的SRTM数据精度评估——以青藏高原地区为例[J]. 国土资源遥感,2015,27(1):100-105.
26 Rabah M, El-Hattab A, Abdallah M. Assessment of the most recent satellite based digital elevation models of Egypt[J]. NRIAG Journal of Astronomy and Geophysics, 2017:S2090997717301190. DOI:.
doi: org/10.1016/j.nrjag.2017.10.006
27 Smitha B A, Fricker H, Holschuh N, et al. Land ice height-retrieval algorithm for NASA's ICESat-2 photon-counting laser altimeter[J]. Remote Sensing of Environment,233. DOI:.
doi: org/10.1016/j.rse.2019.111352
28 Brêda J P L F, Paiva R C D, Bravo J M, et al. Assimilation of satellite altimetry data for effective river bathymetry[J]. Water Resources Research, 2019, 55(9). DOI:.
doi: org/10.1029/2018WR024010
29 Monteiro K D A, Antonio carlos de barros corrêa. application of morphometric techniques for the delimitation of Borborema Highlands, northeast of Brazil, eastern escarpment from drainage knick-points[J]. Journal of South American Earth Sciences, 2020, 103:102729.
30 Colavitto B,Sagripanti L,Jagoe L, et al. Quaternary tectonics in the southern Central Andes(37-38° S): Retroarc compression inferred from morphotectonics and numerical models[J]. Journal of South American Earth Sciences,2020,102:102697.
31 Wu Wenjiao, Zhang Shifang, Zhao Shangmin. Analysis and comparison of SRTM1 DEM and ASTER GDEM V2 Data[J]. Journal of Geo-information Science, 2017, 19(8):1108-1115.
31 武文娇, 章诗芳, 赵尚民. SRTM1 DEM与ASTER GDEM V2数据的对比分析[J]. 地球信息科学学报, 2017, 19(8):1108-1115.
32 Zhongqiong Z, Qingbai W, Xueyi X, et al. Spatial distribution and changes of Xing'an permafrost in China over the past three decades[J]. Quaternary International, 2019, 523:16-24.
33 Zhang G, Shen W, Zhu Y, et al. Evaluation of ASTER GDEM in the northeastern margin of Tibetan Plateau in gra-vity reduction[J]. Geodesy and Geodynamics, 2017, 8(5): 335-341.
34 Yue L, Shen H, Zhang L, et al. High-quality seamless DEM generation blending SRTM-1, ASTER GDEM v2 and ICESat/GLAS observations[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 123:20-34.
No Suggested Reading articles found!