1 |
Chao P, Zhang X, Gang Y, et al. Large kernel matters-improve semantic segmentation by global convolutional network[C]∥ Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, USA: IEEE, 2017: 4353-4361.
|
2 |
Likas A, Vlassis N, Verbeek J. The Global K-means clustering algorithm[J]. Pattern Recognition, 2003, 36(2): 451-461.DOI: .
doi: 10.1016/S0031-3203(02)00060-2
|
3 |
Carson C, Belongie S, Greenspan H, et al. Blobworld: Image segmentation using expectation-maximization and its application to image querying[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(8):1026-1038. DOI: .
doi: 10.1109/TPAMI.2002.1023800
|
4 |
Li Shuang, Ding Shengyan, Qian Yuexiang. The decisiontree classification and its application research in land cover[J]. Remote Sensing Technology and Application, 2002, 17(1): 6-11.
|
4 |
李爽, 丁圣彦, 钱乐祥. 决策树分类法及其在土地覆盖分类中的应用[J].遥感技术与应用, 2002, 17(1): 6-11.
|
5 |
Song M, Civco D. Road extraction using SVM and image segmentation[J]. Photogrammetric Engineering & Remote Sensing,2004,70(12): 1365-1371. DOI: .
doi: 10.14358/P-ERS. 70.12.1365
|
6 |
Stéphane G, Olivier G. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood[J]. Systematic Bology, 2003, 52(5): 696-704. DOI: .
doi: 10.1080/10635150390235520
|
7 |
Jordan M I, Mitchell T M. Machine learning: Trends, perspectives, and prospects[J]. Science, 2015, 349(6245): 255-260. DOI: .
doi: 10.1126/science.aaa8415
|
8 |
Gu Xiaotian, Gao Xiaohong, Ma Huijuan, et al. Comparison of machine learning methods for land use/land cover classification in the complicated terrain regions[J].Remote Sensing Te-chnology and Application, 2019, 34(1):59-69.
|
8 |
谷晓天, 高小红, 马慧娟,等. 复杂地形区土地利用/土地覆被分类机器学习方法比较研究[J]. 遥感技术与应用, 2019, 34(1): 59-69.
|
9 |
Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]∥ Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),Boston,MA,USA,IEEE,2015:3431-3440.
|
10 |
Zhang H, Dana K, Shi J, et al. Context encoding for semantic segmentation[C]∥ Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition( CVPR). Salt Lake City, UT, USA, IEEE, 2018: 7151-7160.
|
11 |
Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[C]∥ International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich, Germany: Springer,2015: 234-241.
|
12 |
Badrinarayanan V, Kendall A, Cipolla R. Segnet: A deep convolutional encoder-decoder srchitecture for image segmentation[J]. IEEETransactions on Pattern Analysisand Machine Intelligence,2017,39(12):2481-2495. DOI: .
doi: 10.1109/TPAMI.2016.2644615
|
13 |
Chen L C, Papandreou G, Kokkinos I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[EB/OL]. arXiv Preprint arXiv: , 2014.
|
14 |
Chen L C, Papandreou G, Kokkinos I, et al. Deep lab: Semantic image segmentation with deep convolutional nets, atrous convolution, and Fully Connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018,40(4):834-848. DOI: .
doi: 10.1109/TPAMI.2017.2699184
|
15 |
Chen L C, Papandreou G, Schroff F, et al. Rethinking atrous convolution for semantic image segmentation[EB/OL]. arXiv Preprint arXiv: , 2017.
|
16 |
Chen L C, Zhu Y, Papandreou G, et al. Encoder decoder with atrous separable convolution for semantic image segmentation[C]∥ Proceedings of the European Conference on Computer Vision(ECCV). Munich,Germany:IEEE,2018:801-818.
|
17 |
Yang M D, Tseng H H, Hsu Y C, et al. Semantic segmentation using deep learning with vegetation indicesfor rice lodging identification in multi date UAV visible Images[J]. Remote Sensing, 2020, 12(4): 633-652. DOI: .
doi: 10.3390/rs12040633
|
18 |
Abdollahi A, Pradhan B, Alamri A M. An ensemble architecture of deep convolutional segnet and U-Net networks for building semantic segmentation from high resolution aerial images[J].Geocarto International,2020(3):116. DOI: .
doi: 10.1080/ 10106049.2020.1856199
|
19 |
He H, Yang D, Wang S, et al. Road extraction by using atrous spatial pyramid pooling integrated encoder decoder network and structural similarity loss[J]. Remote Sensing, 2019, 11(9): 1015-1030. DOI: .
doi: 10.3390/rs11091015
|
20 |
Ding L, Tang H, Bruzzone L. LANet: Local attention embedding to improve the semantic segmentation of remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing,2020,59(1):426-435. DOI: .
doi: 10.1109/TGRS. 2020. 2994150
|
21 |
Hou Q, Zhou D, Feng J. Coordinate attention for efficient mobile network design[C]∥ Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR). 2021: 13713-13722.
|
22 |
Ma N, Zhang X, Sun J. Funnel activation for visual recognition[C]∥ Proceedings of the European Conference onComputer Vision(ECCV),Glasgow, UK: Springer, 2020: 351-368.
|
23 |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]∥ Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas, NV, USA: IEEE, 2016: 770-778.
|
24 |
Hu J, Shen L, Sun G. Squeeze and excitation networks[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, UT: IEEE, 2018: 7132-7141.
|
25 |
Rottensteiner F, Sohn G, Gerke M, et al. Results of the ISPRS benchmark on urban object detection and 3D building reconstruction[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2014,93:256-271. DOI: .
doi: 10.1016/j.isprsjprs. 2013.10.00
|