Please wait a minute...
img

Wechat

Remote Sensing Technology and Application  2022, Vol. 37 Issue (6): 1289-1301    DOI: 10.11873/j.issn.1004-0323.2022.6.1289
    
Monitoring Glacier Avalanches in Tibet Using Sentinel-2 Imagery
Duo Chu1,2(),Caiwang Dunzhu3,Lawang Dunzhu4,Suolang Tajie1,2,Pingcuo Sangdan1,2,Zhaxi Duoji4,Mingma Ciren3,Cuo Ping3
1.Tibet Institute of Plateau Atmospheric and Environmental Sciences,Lhasa 850000,China
2.Tibet Key Laboratory of Plateau Atmosphere and Environment Research,Lhasa 850000,China
3.Gaize Meteorologial Bureau,Gaize 859200,China
4.Rutog Meteorologial Bureau,Rutog 859700,China
Download:  HTML  PDF (7329KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Sentinel-2 is a high-resolution optical Earth observation mission within the GMES (Global Monitoring for Environment and Security) programme, which is renamed Copernicus in 2012, jointly implemented by the EC (European Commission) and ESA (European Space Agency) for global land observation with high revisit capability to provide enhanced continuity of data so far provided by SPOT and Landsat. Copernicus is the most ambitious Earth Observation programme to date. It provides accurate, timely and easily accessible information to improve the management of the environment, understand and mitigate the effects of climate change and ensure civil security. At present, Sentinel-2 is one of the most important data source for remote sensing monitoring and application research, and has been widely used in monitoring natural disasters such as floods,forest fires, landslides, volcanic eruptions, and emergency response and humanitarian crises around the globe,and there are also great potentials in detecting glacier and ice and supporting relief efforts for cryospheric disaster.In this study, the glacier and ice avalanches occurred in Arutso Lake basin in northwestern Tibet and Sedongpu basin in southeastern Tibet in 2016 and 2018 were investigated using Sentinel-2 images and field surveys, and the evolution process of two events were reproduced, which has important reference significance for monitoring cryospheric hazard, emergency relief and management in other mountain regions on the world.Study shows that Arutso No. 53 glacier avalanche completely melted away in July 2018 after lasting for two years from occurrence to final disappearance, while the area of Arutso No. 50 glacier avalanche is 0.58 km2 left on June 22,2021 because of more thickness compared to Arutso glacier No. 53. Four large-scale ice-rock ava lanche and debris flow events in the Sedongpu basin in 2017 and 2018 not only had significant impacts on the river flow, landscape and landform in the basin, but also caused great disasters in the basin and downstream.Two glacier and ice avalanche events were caused by climate warming and local heavy precipitation, acting on specific topographic and geomorphic structure of glacier properties in high mountains. Specifically, Arutso glacier avalanche was caused by climate- and weather-driven external forcing, acting on specific polythermal and soft-bed glacier properties and is an unprecedented large catastrophic instability of low angle mountain glaciers. Glacier and snow melting caused by climate warming and heavy rainfall are main triggering factors for ice and rock avalanche in the Sedongpu basin, which is a typical hazard cascades originating from cryosphere, followed by rock fall, debris flow, dammed lake, and lake outburst flood disaster. It often occurs in the Sedongpu basin and will continue to occur for a long time in the future, and the high mountain ridge covered with ice and snow in the right side of back of the basin is still a high-risk area for ice and rock avalanches in the future.

Key words:  Glacier avalanche      Cryospheric hazard      Sentinel-2      Field survey      Tibet     
Received:  25 March 2022      Published:  15 February 2023
ZTFLH:  TP79  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Duo Chu
Caiwang Dunzhu
Lawang Dunzhu
Suolang Tajie
Pingcuo Sangdan
Zhaxi Duoji
Mingma Ciren
Cuo Ping

Cite this article: 

Duo Chu,Caiwang Dunzhu,Lawang Dunzhu,Suolang Tajie,Pingcuo Sangdan,Zhaxi Duoji,Mingma Ciren,Cuo Ping. Monitoring Glacier Avalanches in Tibet Using Sentinel-2 Imagery. Remote Sensing Technology and Application, 2022, 37(6): 1289-1301.

URL: 

http://www.rsta.ac.cn/EN/10.11873/j.issn.1004-0323.2022.6.1289     OR     http://www.rsta.ac.cn/EN/Y2022/V37/I6/1289

波段中心波长/nm波段宽度/nm空间分辨率/m主要用途
Band 1-Coastal and aerosol(海岸与气溶胶)4432060大气校正
Band 2-Blue(蓝波段)4906510对植被气溶胶散射敏感
Band 3-Green(绿波段)5603510绿色峰值,对植被总叶绿素敏感
Band 4-Red(红波段)6653010叶绿素最大吸收波段
Band 5-Vegetation red edge (植被红边波段1)7051520植被监测
Band 6-Vegetation red edge (植被红边波段2)7401520植被监测
Band 7-Vegetation red edge (植被红边波段3)7832020植被监测
Band 8-NIR(近红外波段)84211510植被叶面积监测
Band 8a-Narrow NIR(窄近红外波段)8652020用于水汽吸收参考
Band 9-Water vapour(水汽波段)9402060水汽吸收大气校正
Band 10 SWIR-cirrus(短波红外卷云波段)1 3753060大气校正中的薄卷云监测
Band 11 SWIR1(短波红外波段1)1 6109020积雪监测,云雪识别
Band 12 SWIR2(短波红外波段2)2 19018020气溶胶光学厚度计算
Table1  Bands of Sentinel-2 MSI sensors
Fig.1  The melting process of Arutso No. 53 and 50 glacier avalanches by Sentinel-2 images
Fig.2  Area change of Arutso No. 53 and 50 glacier avalanches by Sentinel-2 images
Fig.3  Field investigation photos taken on February 16, 2022 in glacier avalanche sites
Fig.4  Sentinel-2 images of ice and rock avalanches in Sedongpu basin
Fig.5  Sentinel-2 images of Sedongpu basin outlet
1 Shugar D H, Jacquemart M, Shean D, et al. A massive rock and ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya[J]. Science, 2021, 373(6552): 300-306.DOI: .
doi: 10.1126/science.abh4455
2 Yao Tandong, Yu Wusheng, Wu Guangjian, et al. Glacier anomalies and relevant disaster risks on the Tibetan Plateau and surroundings[J]. Chinese Science Bulletin,2019,64(27):2770-2782.
2 姚檀栋,余武生,邬光剑,等.青藏高原及周边地区近期冰川状态失常与灾变风险[J].科学通报,2019,64(27):2770-2782.
3 Immerzeel W W, van Beek L P H, Bierkens M F P. Climate change will affect the Asian water towers[J]. Science, 2010, 328: 1382-1385. DOI: .
doi: 10.1126/science.1183188
4 Wu Guangjian, Yao Tandong, Wang Weicai, et al. Glacial hazards on Tibetan Plateau and surrounding alpines[J]. Bulletin of Chinese Academy of Sciences, 2019,34(11):1285-1292.
4 邬光剑,姚檀栋,王伟财,等.青藏高原及周边地区的冰川灾害[J]. 中国科学院院刊, 2019,34(11):1285-1292.
5 Hu Wentao, Yao Tandong, Yu Wusheng, et al. Advances in the study of glacier avalanches in High Asia[J]. Journal of Glaciology and Geocryology, 2018,40(6):1141-1152.
5 胡文涛,姚檀栋,余武生,等. 高亚洲地区冰崩灾害的研究进展[J]. 冰川冻土,2018,40(6): 1141-1152.
6 Wang Shijin, Xiao Cunde. Global cryospheric disaster at high risk areas: Impacts and trend[J]. Chinese Science Bulletin, 2019,64(9):891-901.
6 王世金, 效存德. 全球冰冻圈灾害高风险区: 影响与态势[J].科学通报, 2019, 64(9): 891-901.
7 Li Zhuang, Li Bin, Gao Yang, et al. Remote sensing interpretation of development characteristics of high-position geological hazards in Sedongpu gully, downstream of Yarlung Zangbo River[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3):33-41.
7 李壮,李滨,高杨,等. 雅鲁藏布江下游色东普沟高位地质灾害发育特征遥感解译[J]. 中国地质灾害与防治学报, 2021,32(3):33-41.
8 Chai Bo, Tao Yangyang, Du Juan, et al. Hazard assessment of debris flow triggered by outburst of Jialong glacial lake in Nyalam County, Tibet[J]. Earth Science,2020, 45(12): 4630-4639.
8 柴波,陶阳阳,杜娟,等.西藏聂拉木县嘉龙湖冰湖溃决型泥石流危险性评价[J].地球科学,2020, 45(12):4630-4639.
9 Tang Minggao, Wang Lina, Wang Xinxin, et al. Distribution and risk of ice avalanche hazards in Tibetan Plateau[J]. Earth Science,2022,47(12):4647-4662.
9 汤明高,王李娜,刘昕昕,等.青藏高原冰崩隐患发育分布规律及危险性[J].地球科学,2022,47(12):4647-4662.
10 Huggel C, Zgraggen-Oswald S, Haeberli W, et al. The 2002 rock/ice avalanche at Kolka /Karmadon, Russian Caucasus: assessment of extraordinary avalanche formation and mobility, and application of QuickBird satellite imagery[J].Natural Hazards and Earth System Science, 2005, 5(2):173-187. DOI: .
doi: 10.5194/nhess-5-173-2005
11 Kääb A, Wessels R, Haeberli W, et al. Rapid imaging facilitates timely assessment of glacier hazards and disasters[J]. Eos Transactions American Geophysical Union,2003,84(13):117-124. DOI: .
doi: 10.1029/2003EO130001
12 Pandey P. Inventory of rock glaciers in Himachal Himalaya, India using high-resolution Google Earth imagery[J].Geomorphology,2019,340:103-115. DOI: .
doi: 10.1016/j.geomorph. 2019.05.001
13 Li Zhijie, Wang Ninglian, Hou Shanshan. Monitoring recent surging of the North Kyzkurgan Glacier in central Pamir by remote sensing[J]. Journal of Glaciology and Geocryology, 2021,43(5):1267-1276.
13 李志杰,王宁练,侯姗姗. 帕米尔中部North Kyzkurgan 冰川跃动变化遥感监测[J]. 冰川冻土,2021,43(5):1267-1276.
14 Guo Wanqin, Liu Shiyin, Xu Junli, et al. Monitoring recent surging of the Yulinchuan glacier on north slopes of Muztag range by remote sensing[J]. Journal of Glaciology and Geocryology, 2012,34(4):765-774.
14 郭万钦,刘时银,许君利,等.木孜塔格西北坡鱼鳞川冰川跃动遥感监测[J]. 冰川冻土,2012,34(4):765-774.
15 Zhang Zhen, Liu Shiyin, Wei Junfeng, et al. Monitoring recent surging of the Karayaylak Glacier in Pamir by remote sensing[J].Journal of Glaciology and Geocryology,2016,38(1):11-20.
15 张震,刘时银,魏俊锋,等.新疆帕米尔跃动冰川遥感监测研究[J].冰川冻土,2016,38(1):11-20.
16 Kääb A. Monitoring high-mountain terrain deformation from repeated air-and spaceborne optical data: Examples using digital aerial imagery and ASTER data[J]. ISPRS Journal of Photogrammetry and remote sensing,2002,57(1): 39-52. DOI: .
doi: org/10.1016/S0924-2716(02)00114-4
17 Zhong Hanxiao, Bian Jinhu, Li Ainong. Radiometric consistency between Landsat-8 OLI and Sentine-2 MSI imagery in mountainous terrain[J].Remote Sensing Technology and Application,2018,33(3):428-438.
17 钟函笑,边金虎,李爱农.Landsat-8 OLI与Sentinel-2 MSI山区遥感影像辐射一致性研究[J].遥感技术与应用,2018,33(3):428-438.
18 Aschbacher J, Milagro-Pérez M P. The European Earth monitoring (GMES) programme: Status and perspectives[J]. Remote Sensing of Environment,2012,120:3-8. DOI: .
doi: 10.1016/j.rse.2011.08.028
19 Baetens L, Desjardins C, Hagolle O. Validation of Copernicus Sentinel-2 cloud masks obtained from MAJA, Sen2Cor, and FMask processors using reference cloud masks generated with a supervised active learning procedure[J]. Remote Sensing, 2019, 11: 433.DOI: .
doi: 10.3390/rs11040433
20 Drusch M, Del Bello U, Carlier S, et al. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services[J]. Remote Sensing of Environment,2012,120:25-36. DOI: .
doi: 10.1016/j.rse.2011.11.026
21 Richter R, Louis J, Berthelot B. Sentinel-2 MSI–Level 2A Products Algorithm Theoretical Basis Document[R]. VEGA Space GmbH, 2011, Issue 1.8.
22 Berger M, Moreno J, Johannessen J A, et al. ESA's sentinel missions in support of earth system science[J]. Remote Sensing of Environment,2012,120:84-90.DOI: .
doi: 10.1016/j.rse. 2011.07.023
23 Hagolle O, Huc M, Pascual D V, et al. A multi-temporal method for cloud detection, applied to FORMOSAT-2, VEN_S,Landsat and Sentinel-2 images[J]. Remote Sensing of Environment,2010,114(8):1747-1755, DOI: .
doi: 10.1016/j.rse.2010.03.002
24 Zhu Z, Wang S, Woodcock C E. Improvement and expansion of the FMask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4-7,8,and Sentinel 2 images[J]. Remote Sensing of Environment,2015,159:269-277. DOI: .
doi: 10.1016/j.rse.2014.12.014
25 Hall D K, Riggs G A, Salomonson V V. Theoretical Basic Document (ATBD) for the MODIS Snow and Sea Ice-Mapping Algorithms[R], 2001, NASA.
26 Cao Yungang, Liu Chuang. The development of snow-cover mapping from AVHRR to MODIS[J]. Geography and Geo-Information Science,2005,21(5):15-19.
26 曹云刚,刘闯.从AVHRR到MODIS 的雪盖制图研究进展[J]. 地理与地理信息科学,2005,21(5):15-19.
27 Hall D K, Riggs G A, Salomonson V V. Development of methods for mapping global snow cover using Moderate Resolution Imaging Spectroradiometer data[J]. Remote Sensing of Environment, 1995, 54(2):127-140. DOI: .
doi: 10.1016/0034-4257(95)00137-P
28 Hall D K, Riggs G A, Salomonson V V, et al. MODIS snow-cover products[J]. Remote Sensing of Environment, 2002,83(1-2):181-194. DOI: .
doi: 10.1016/S0034-4257(02)00095-0
29 Tian L, Yao T, Gao Y, et al. Two glaciers collapse in western Tibet[J]. Journal of Glaciology, 2017, 63,237:194-197. DOI: .
doi: 10.1017/jog.2016.122
30 Kääb A, Leinss S, Gilbert A, et al. Massive collapse of two glaciers in western Tibet in 2016 after surge-like instability[J]. Nature Geoscience, 2018,11:114-120. DOI: .
doi: 10.1038/s41561-017-0039-7
31 Yang Dandan, Yao Tandong, Wu Guangjian,et al. Study of air temperature variations during the past 100 years in the Aru ice core,western Qinghai-Tibet Plateau[J]. Journal of Glaciology and Geocryology,2021,43(1):124-134.
31 杨丹丹,姚檀栋,邬光剑,等. 青藏高原西部阿汝冰芯记录的近100 a气温变化研究[J]. 冰川冻土,2021,43(1):124-134.
32 Lei Y, Yao T, Tian L, et al. Response of downstream lakes to Aru glacier collapses on the western Tibetan Plateau[J]. The Cryosphere, 2021, 15:199-214. DOI: .
doi: 10.5194/tc-15-199-2021
33 Li Jijun, Zheng Benxing, Yang Xijin, et al. Glaciers in Tibet[M].Beijing: Science Press, 1986.
33 李吉均,郑本兴,杨锡金, 等. 西藏冰川[M]. 北京:科学出版社, 1986.
34 Kääb A, Jacquemart M, Gilbert A, et al. Sudden large-volume detachments of low-angle mountain glaciers-more frequent than thought?The Cryosphere,2021,15:1751-1785. DOI: .
doi: 10.5194/tc-15-1751-2021
35 Liu Chuanzheng, Jietang Lü, Tong Liqiang, et al. Research on glacial/rock fall-landslide-debris flows in Sedongpu basin along Yarlung Zangbo River in Tibet[J]. Geology in China, 2019, 46(2): 219-234.
35 刘传正,吕杰堂,童立强,等.雅鲁藏布江色东普沟崩滑-碎屑流堵江灾害初步研究[J]. 中国地质, 2019,46(2):219-234.
36 Tong Liqiang, Tu Jienan, Pei Lixin,et al. Preliminary discussion of the frequently debris flow events in Sedongpu Basin at Gyalaperi peak,Yarlung Zangbo River[J]. Journal of Engineering Geology, 2018, 26(6):1552-1561.
36 童立强,涂杰楠,裴丽鑫,等.雅鲁藏布江加拉白垒峰色东普流域频繁发生碎屑流事件初步探讨[J].工程地质学报, 2018,26(6):1552-1561.
37 Wang W, Yang J, Wang Y, Dynamic processes of 2018 Sedongpu landslide in Namcha Barwa-Gyala Peri massif revealed by broadband seismic records[J]. Landslides, 2020, 17: 409-418. DOI: .
doi: 10.1007/s10346-019-01315-3
38 Chen C, Zhang L, Xiao T, et al. Barrier lake bursting and flood routing in the Yarlung Tsangpo Grand Canyon in October 2018[J]. Journal of Hydrology, 2020, 583:124603. DOI: .
doi: 10.1016/j.jhydrol.2020.124603
39 Zhao Yonghui. Study on the barrier lake event for landslide⁃river blocking of Sedongpu valley on Yarlung Zangbo River in Tibet of China[J].Journal of Hebei Geo University,2020,43(3):31-37.
39 赵永辉.中国西藏雅鲁藏布江色东普沟滑坡-堵江堰塞湖事件研究[J]. 河北地质大学学报,2020,43(3):31-37.
40 Zhao C, Yang W, Westoby M,et al.An approximately 50 Mm3 ice-rock avalanche on 22 March 2021 in the Sedongpu valley, southeastern Tibetan Plateau[J]. The Cryosphere, 2022,16:1333-1340. DOI: .
doi: 10.5194/tc-16-1333-2022
41 Nie Y, Pritchard H D, Liu Q, et al. Glacial change and hydrological implications in the Himalaya and Karakoram[J]. Nature Reviews Earth & Environment, 2021, 2:91-106. DOI: .
doi: 10.1038/s43017-020-00124-w
42 Delaney K B, Evans, S G, The 2000 Yigong landslide (Tibetan Plateau), rockslide-dammed lake and outburst flood: review, remote sensing analysis, and process modelling[J]. Geomorphology, 2015,246: 377-393. DOI: .
doi: 10.1016/j.geomorph.2015.06.020
43 Armstrong R L, Rittger K, Brodzik M J . et al. Runoff from glacier ice and seasonal snow in High Asia: Separating melt water sources in river flow[J]. Regional Environmental Change, 2019, 19: 1249-1261. DOI: .
doi: 10.1007/s10113-018-1429-0
44 Muhammad S, Tian L. Changes in the ablation zones of glaciers in the western Himalaya and the Karakoram between 1972 and 2015[J]. Remote Sensing of Environment, 2016, 187:505-512. DOI: .
doi: 10.1016/j.rse.2016.10.034
45 Kraaijenbrink P D A, Stigter E E, Yao T, et al. Climate change decisive for Asia’s snow meltwater supply[J]. Nature Climate Change, 2021,11:591-597. DOI: .
doi: 10.1038/s41558-021-01074-x
46 Liu J, Wu Y, Gao X. Increase in occurrence of large glacier-related landslides in the high mountains of Asia[J]. Scientific Reports,2021,11:1635. DOI: .
doi: 10.1038/s41598-021-81212-9
[1] XU Xiao-jun,DU Hua-qiang,ZHOU Guo-mo,FAN Wen-yi. Review on Correlation Analysis of Independent Variables in Estimation Models of Vegetation Biomass Based on Remote Sensing[J]. Remote Sensing Technology and Application, 2008, 23(2): 239 -247 .
[2] Yu Wenping,Ma Mingguo. Validation of the MODIS Land Surface Temperature Products—A Case Study of the Heihe River Basin[J]. Remote Sensing Technology and Application, 2011, 26(6): 705 -712 .
[3] Li Weiwei,Husi Letu,Chen Hongbin,Shang Huazhe. Estimation of Surface Solar Radiation Using MODIS Satellite Data and RSTAR Model[J]. Remote Sensing Technology and Application, 2017, 32(4): 643 -650 .
[4] Chunliang Zhao,Wenbo Xu,Jinlong Fan. Validation of Narrow-band Surface Albedo Retrieved from FY-3C MERSI Satellite Data[J]. Remote Sensing Technology and Application, 2020, 35(1): 153 -162 .
[5] Zongsheng Zheng,Chenyu Hu,Dongmei Huang,Guoliang Zou,Zhaorong Liu,Wei Song. Research on Transfer Learning Methods for Classification of Typhoon Cloud Image[J]. Remote Sensing Technology and Application, 2020, 35(1): 202 -210 .
[6] Lingmei Jiang,Huizhen Cui,Gongxue Wang,Jianwei Yang,Jian Wang,Fangbo Pan,Xu Su,Xiyao Fang. Progress on Remote Sensing of Snow, Surface Soil Frozen/Thaw State and Soil Moisture[J]. Remote Sensing Technology and Application, 2020, 35(6): 1237 -1262 .
[7] Jianting Huang,Na Yang,Chao Ma. Study on the Difference Characteristics between SMAP L2 Multi-scale Soil Moisture Data and ISMN Filed Measurement[J]. Remote Sensing Technology and Application, 2022, 37(6): 1392 -1403 .
[8] Shaojie Du,Tianjie Zhao,Jiancheng Shi,Chunfeng Ma,Defu Zou,Zhen Wang,Panpan Yao,Zhiqing Peng,Jingyao Zheng. Sentinel-1 and Sentinel-2 Synergistic Retrieval of Surface Soil Moisture[J]. Remote Sensing Technology and Application, 2022, 37(6): 1404 -1413 .
[9] Yuling Huang,Kai Liu,Shudong Wang,Dacheng Wang,Feng Yuan,Baolin Wang,Wen Jing,wei Wang. Comparison and Assessment of Remote Sensing and Model-based Soil Moisture Products in Typical Regions of North China[J]. Remote Sensing Technology and Application, 2022, 37(6): 1414 -1426 .
[10] Xiyao Fang,Lingmei Jiang,Huizhen Cui. Soil Moisture Retrieval in the Tibetan Plateau based on Sentinel-1 Radar Data[J]. Remote Sensing Technology and Application, 2022, 37(6): 1447 -1459 .