Please wait a minute...


Remote Sensing Technology and Application  2022, Vol. 37 Issue (6): 1319-1327    DOI: 10.11873/j.issn.1004-0323.2022.6.1319
Axial Two-dimensional Velocity and Motion Mechanism of the South Inylchek Glacier in Central Tianshan Mountains
Yali Zhang1,2,3(),Lifeng Zhang1,2,3(),Yi He1,2,3,Wang Yang1,2,3,Shengpeng Cao1,2,3
1.Faculty of Geomatics,Lanzhou Jiaotong University,Lanzhou 730000,China
2.National?Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring,Lanzhou 730000,China
2.Gansu Provincial Engineering Laboratory for National Geographic State Monitoring,Lanzhou 730000,China
Download:  HTML  PDF (5597KB) 
Export:  BibTeX | EndNote (RIS)      

Glacier movement can cause debris flow, landslide and other geological disasters to a certain extent, so it is very important to master process of glacier movement. Glacier velocity reveals the process of glacier movement, but some existing methods of constructing glacier velocity do not consider direction of glacier flow, and mechanism of glacier movement revealed is not precise enough. Based on Sentinel-1A ascending orbit data from 2018 to 2020, this paper uses Pixel Offset Tracking (POT) technology to obtain azimuth and range displacement fields of the South Inylchek Glacier in Central Tianshan Mountains, introduces the glacier flow direction to construct the axial two-dimensional velocity of glacial mainstream line, and analyzes the mechanism of glacier movement. The results show that pixel migration velocity in stable region is far less than the axial two-dimensional velocity of glacier mainstream line. The axial two-dimensional velocity model constructed by POT technology is good for monitoring the glacier movement process. In 2018, 2019 and 2020, the axial two-dimensional average velocities of the South Inylchek Glacier in Central Tianshan Mountains are 62.28 cm/d, 49.41 cm/d and 61.89 cm/d, respectively. The axial two-dimensional velocity of ablation area (ice tongue) decreases slowly at first, then increases gradually, and last decreases rapidly with the decrease of elevation, and the glacier velocity decreases from axis to edge of both sides. With the increase of temperature, the speed of glacier movement increases gradually. The increase of temperature may be the main reason for the acceleration of glacier velocity.

Key words:  South Inylchek Glacier      Movement speed      Sentinel-1A      POT     
Received:  12 July 2021      Published:  15 February 2023
ZTFLH:  P343.6  
Corresponding Authors:  Lifeng Zhang     E-mail:;
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
Articles by authors
Yali Zhang
Lifeng Zhang
Yi He
Wang Yang
Shengpeng Cao

Cite this article: 

Yali Zhang,Lifeng Zhang,Yi He,Wang Yang,Shengpeng Cao. Axial Two-dimensional Velocity and Motion Mechanism of the South Inylchek Glacier in Central Tianshan Mountains. Remote Sensing Technology and Application, 2022, 37(6): 1319-1327.

URL:     OR

Fig. 1  Geographical location and topographic features of the South Inylchek Glacier
Table 1  Data pair parameters of Sentinel-1A
Fig. 2  Schematic diagram of axial two-dimensional velocity calculation of the South Inylchek Glacier (the base map is Sentinel-2 band 4)
Fig.3  Daily mean azimuth and range velocity from 2018 to 2020
Fig.4  The velocity of the South Inylchek Glacier along the AC profile
Fig.5  The profile velocity from 2018 to 2020
Fig. 6  Histogram of frequency distribution of pixel migration velocity
Fig.7  Temperature and precipitation in Awat from 2018 to 2020
1 Bolch T. Climate change and glacier retreat in Northern Tien Shan (Kazakhstan/Kyrgyzstan) using remote sensing data[J]. Global and Planetary Change, 2007, 56(1/2):1-12.
2 Richardson S D, Reynolds J M. An overview of flacial hazards in the Himalayas[J]. Quaternary International, 2000, 65(99):31-47.
3 Tong Liqiang, Tu Jienan, Pei Lixin, et al. Preliminary discussion of the frequently debris flow events in Sedongpu Basin at Gyalaperi Peak, Yarlung Zangbo River[J]. Journal of Engineering Geology,2018,26(6):1552-1561.
3 童立强, 涂杰楠, 裴丽鑫, 等. 雅鲁藏布江加拉白垒峰色东普流域频繁发生碎屑流事件初步探讨[J]. 工程地质学报, 2018,26(6):1552-1561.
4 Wang Min. Extraction of glacier motion field in Kangchenjunga Area based on GF-3 SAR images[D]. Chengdu: Southwest Jiaotong University, 2020.
4 王敏. 基于GF-3 SAR影像提取干城章嘉峰地区冰川运动场[D]. 成都:西南交通大学, 2020.
5 Cao Bo, Wang Jie, Zhang Chen, et al. The remote sensing in research of modern glacier changes[J]. Remote Sensing Technology and Application, 2011,26(1):52-59.
5 曹泊, 王杰, 张忱, 等. 遥感技术在现代冰川变化研究中的应用[J]. 遥感技术与应用, 2011, 26(1):52-59.
6 Erten E, Reigber A, Hellwich O, et al. Glacier velocity monitoring by maximum likelihood texture tracking[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(2):394-405.
7 Trouve, E, Fallourd, et al. Monitoring temperate glacier displacement by multi-temporal TerraSAR-X images and continuous GPS measurements[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2011, 4(2):372-386.
8 Luckman A, Quincey D, Bevan S. The potential of satellite radar interferometry and feature tracking for monitoring flow rates of himalayan glaciers[J]. Remote Sensing of Environment, 2007, 111(2-3):172-181.
9 Zhang Xiaobo, Zhao Xuesheng, Ge Daqing, et al. Motion characteristics of the South Inilchek Glacier Derived from new C-Band SAR satellite[J]. Geomatics and Information Science of Wuhan University, 2019, 44(3):429-435.
9 张晓博, 赵学胜, 葛大庆, 等. 利用新型 C 波段雷达卫星研究南伊内里切克冰川运动特征[J]. 武汉大学学报·信息科学版, 2019, 44(3):429-435.
10 Liu Guoxiang, Zhang Bo, Zhang Rui, et al. Monitoring dynamics of Hailuogou Glacier and the secondary landslide Disasters based on combination of Satellite SAR and ground-based SAR[J]. Geomatics and Information Science of Wuhan University,2019,44(7):980-995.
10 刘国祥,张波,张瑞,等.联合卫星SAR和地基SAR的海螺沟冰川动态变化及次生滑坡灾害监测[J]. 武汉大学学报·信息科学版,2019,44(7):980-995.
11 Tazio S, Frank P, Andreas W, et al. Circum-arctic changes in the flow of glaciers and ice caps from Satellite SAR data between the 1990s and 2017[J]. Remote Sensing, 2017, 9(9):947. DOI: .
doi: 10.3390/rs9090947
12 Strozzi T, Luckman A, Murray T,et al. Glacier motion estimation using SAR offset-tracking procedures[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2384-2391.
13 Zhang Shengpeng, Zhou Zhongzheng, Zhao Lijiang, et al. Extraction of Gangnalou Glacier velocity based on SAR migration tracking method[J]. Bulletin of Surveying and Mapping, 2020, 524(11):36-41.
13 张生鹏, 周中正, 赵利江, 等. 基于SAR偏移量跟踪法提取岗纳楼冰川流速[J]. 测绘通报, 2020, 524(11):36-41.
14 Li Jia, Li Zhiwei, Wang Changcheng, et al. Using SAR of offset-tracking approach to surface motion of the South Inylchek Glacier in Tianshan[J]. Chinese Journal of Geophysics, 2013,56(4):1226-1236.
14 李佳, 李志伟, 汪长城, 等. SAR偏移量跟踪技术估计天山南依内里切克冰川运动[J]. 地球物理学报, 2013,56(4):1226-1236.
15 Li J, Li Z W, Ding X L, et al. Investigating mountain glacier motion with the method of SAR intensity-tracking: Removal of topographic effects and analysis of the dynamic patterns[J]. Earth-Science Reviews, 2014, 138:179-195.
16 Hagg W, Mayer C, Helm L A. Sub-debris melt rates on Southern Inylchek Glacier, Central Tian Shan[J]. Geografiska Annaler, 2008, 90(1):55-63.
17 Julia N, Mahdi M, Hans-Ulrich W. Estimating spatial and temporal variability in surface kinematics of the Inylchek Glacier, Central Asia, using TerraSAR-X data[J]. Remote Sensing, 2014, 6(10):9239-9259.
18 Li Yi, Yan Shiyong, Li Zhiguo, et al. The flow state of South Inylchek Glacier in the Tianshan Mountains in 2016: Extraction and analysis based on Landsat-8 OLI Image[J]. Journal of Glaciology and Geocryology,2017,39(6):1281-128.
18 李毅, 闫世勇, 李治国, 等. 基于Landsat-8 OLI影像的天山南伊内里切克冰川2016年冰川表面运动状态提取与分析[J]. 冰川冻土, 2017,39(6):1281-1288.
19 Aizen Vladimir B. Association between atmospheric circulation patterns and firn-ice core records from the Inylchek Glacierized Area, Central Tien Shan, Asia[J]. Journal of Geophysical Research Atmospheres,2004,109:D08304. DOI: .
doi: 10.1029/2003JD003894
20 Li Shirao. PO-SBAS model based on baseline combination optimization for extracting Bugyai Kangri glacier motion field[D]. Chongqing: Southwest Jiaotong University, 2020.
20 李诗娆. 基于基线组合优化的PO-SBAS模型提取布加岗日冰川运动场[D].重庆: 西南交通大学, 2020.
21 Ruan Zhixing. Study on feature and spatial information extraction method of mountain glacier movement based on SAR image[D]. Beijing:University of Chinese Academy of Sciences.
21 阮智星. 基于SAR图像的山地冰川运动特征与空间信息提取方法研究[D]. 北京:中国科学院大学.
22 Wang Shizhe, Ke Changqing. Distribution and variation of glacier velocity in Himalayas based on ALOS PALSAR[J]. Remote Sensing Technology and Application, 2018,33(5):170-183.
22 王仕哲, 柯长青. 基于ALOSPALSAR的喜马拉雅山冰川流速分布及变化[J]. 遥感技术与应用, 2018,33(5):170-183.
23 Zhang Qimin, Zheng Yitong, Zhang Lu, et al. South Inylchek surface motion extraction and analysis based on time-series pixel tracking algorithm[J]. Remote Sensing Technology and Application,2020,35(6):1273-1282.
23 张齐民,郑一桐,张露, 等. 基于时序像素跟踪算法的南伊内里切克冰川运动提取与特征分析[J]. 遥感技术与应用,2020,35(6):1273-1282.
24 Wang Lei, Jiang Zongli, Liu Shiyin, et al. Characteristic of glaciers’ movement Along Karakoram Highway[J]. Remote Sensing Technology and Application, 2019,34(2):412-423.
24 王磊, 蒋宗立, 刘时银, 等. 中巴公路沿线冰川运动特征[J]. 遥感技术与应用, 2019,34(2):412-423.
25 Zhou J, Zhen L, Guo W. Estimation and analysis of the surface velocity field of mountain glaciers in Muztag Ata using satellite SAR data[J]. Environmental Earth Sciences, 2014, 71(8):3581-3592.
[1] DING Jing, TANG Jun-wu, LIN Ming-sen. Acquisition of MODIS Ocean Color Satellite Data and Its Data Processing[J]. Remote Sensing Technology and Application, 2003, 18(4): 263 -268 .
[2] WU Chuan-Qiang, WANG Qiao, YANG Zhi-Feng, WEI Bin, SUN Zhong-ping, LIU Xiao-Man. Remote Sensing Analysis in Yangtzi River Estuary and the Inshore Area[J]. Remote Sensing Technology and Application, 2007, 22(6): 707 -709 .
[3] GUAN Min,GU Song-yan,YANG Zhong-dong. Geolocation Method for FY-3 MWHS&rsquo|Remote Sensing Image[J]. Remote Sensing Technology and Application, 2008, 23(6): 712 -716 .
[4] ZHU Shan-you,ZHANG Gui-xin,YIN Qiu,KUANG Ding-bo. The Study on the Retrieval of the Air Temperature Based onMulti-sources Polar Orbit Meteorological Satellite Data[J]. Remote Sensing Technology and Application, 2009, 24(1): 27 -31 .
[5] WANG Jiang-hao,GE Yong. Simulation Analysis of GCP Residuals in the Remote Sensing Image Registration[J]. Remote Sensing Technology and Application, 2011, 26(2): 226 -232 .
[6] Yang Hequn,Zhou Hongmei,Yin Qiu,Han Tao,Ge Weiqiang. Fast Pre-processing of MERSI Data on FY-3 Meteorological Satellite Using IDL[J]. Remote Sensing Technology and Application, 2012, 27(4): 566 -574 .
[7] Cai Huiwen,Yang Jun,Li Xiaojing,Xia Xiang ao. null[J]. Remote Sensing Technology and Application, 2012, 27(6): 961 -966 .
[8] Hou Shanshan,Lei Liping,Guan Xianhua. A General Introduction to Greenhouse Gases Observing Satellite (GOSAT) and Its Products[J]. Remote Sensing Technology and Application, 2013, 28(2): 269 -275 .
[9] Zhao Yongquan,Shan Xiaojun,Tang Ping. Spatial Consistency Analysis and Relative Geometric Correction of Low Spatial Resolution Multi\|source Remote Sensing Data[J]. Remote Sensing Technology and Application, 2014, 29(1): 155 -163 .
[10] Hu Juyang,Tang Shihao,Dong Lixin. Land Surface Temperature Retrieval from FY3A/MERSI[J]. Remote Sensing Technology and Application, 2014, 29(4): 531 -538 .