1 |
Zhao Tianjie. The new development and future prospects of the L-band of passive microwave inversion of soil moisture[J]. Progress in Geography,2018,37(2):198-213.
|
1 |
赵天杰, 被动微波反演土壤水分的L波段新发展及未来展望[J]. 地理科学进展,2018,37(2):198-213.
|
2 |
Liu J, Chai L, Dong J, et al. Uncertainty analysis of eleven multisource soil moisture products in the third pole environment based on the three-corned hat method[J]. Remote Sensing of Environment, 2021, 255: 112225.DOI: .
doi: 10.1016/j.rse.2020.112225
|
3 |
Lao Congkun, Yang Na, Xu Shaobo,et al. Research on the influence of retrieval strategy on SMOS soil moisture retrieval algorithm[J]. Remote Sensing Technology and Application, 2020,35(1):65-73.
|
3 |
劳从坤,杨娜,徐少博,等. 反演策略对SMOS土壤水分反演算法的影响研究[J]. 遥感技术与应用, 2020,35(1): 65-73.
|
4 |
Dharssi I, Bovis K J, Macpherson B, et al. Operational assimilation of ASCAT surface soil wetness at the Met Office[J]. Hydrology and Earth System Sciences,2011,15(8):2729-2746.
|
5 |
Brocca L, Melone F, Moramarco T, et al. Improving runoff prediction through the assimilation of the ASCAT soil moisture product[J]. Hydrology and Earth System Sciences,2010, 14(10): 1881-1893.
|
6 |
Sun Jingxia, Zhang Dongyou, Hou Yuchu.Collaborative inversion of forest surface soil moisture based on multi-source remote sensing data[J]. Remote Sensing Technology and Application, 2021,36(3): 564-570.
|
6 |
孙景霞, 张冬有,侯宇初.基于多源遥感数据协同反演森林地表土壤水分研究[J]. 遥感技术与应用, 2021,36(3): 564-570.
|
7 |
Yang Tao, Gong Huili, Li Xiaojuan, et al.Research prog ress in remote sensing monitoring of soil moisture[J]Acta Ec-ologica Sinica, 2010,30(22): 6264-6277.
|
7 |
杨涛,宫辉力,李小娟,等.土壤水分遥感监测研究进展[J]. 生态学报,2010,30(22):6264-6277.
|
8 |
Al-Yaari A, Wigneron J P, Ducharne A, et al. Global-scale evaluation of two satellite-based passive microwave soil moisture datasets (SMOS and AMSR-E) with respect to Land Data Assimilation System estimates[J]. Remote Sensing of Environment, 2014, 149: 181-195.DOI: .
doi: 10.1016/j.rse.2014.04.006
|
9 |
Njoku E G, Li L. Retrieval of land surface parameters using passive microwave measurements at 6-18 GHz[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(1): 79-93.
|
10 |
Jackson T J. III. Measuring surface soil moisture using passive microwave remote sensing[J]. Hydrological Processes, 1993, 7(2): 139-152.
|
11 |
O'Neill P, Bindlish R, Chan S, et al. Algorithm Theoretical Basis Document. Level 2 & 3 Soil Moisture (Passive) Data Products[C]//SMAP Science Documents, 2018.
|
12 |
Owe M, de Jeu R, Holmes T. Multisensor historical climatology of satellite-derived global land surface moisture[J]. Journal of Geophysical Research, 2008, 113(F1). DOI: .
doi: 10.1029/2007JF000769
|
13 |
Owe M, de Jeu R, Walker J. A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index[J].IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(8): 1643-1654.
|
14 |
Zhao T, Shi J, Entekhabi D, et al. Retrievals of soil moisture and vegetation optical depth using a multi-channel collaborative algorithm[J]. Remote Sensing of Environment, 2021, 257: 112321. DOI: .
doi: 10.1016/j.rse.2021.112321
|
15 |
Mo T, Choudhury B J, Schmugge T J, et al. A model for microwave emission from vegetation-covered fields[J]. Journal of Geophysical Research: Oceans, 1982, 87(C13): 11229-11237.
|
16 |
Wigneron J P, Kerr Y, Waldteufel P, et al. L-band Microwave Emission of the Biosphere (L-MEB) Model: Description and calibration against experimental data sets over crop fields[J].Remote Sensing of Environment,2007,107(4):639-655.
|
17 |
Kerr Y H, Waldteufel P, Wigneron J, et al. The SMOS mission: New tool for monitoring key elements ofthe global aater cycle[J]. Proceedings of the IEEE, 2010, 98(5): 666-687.
|
18 |
Kerr Y HWaldteufel P P, Wigneron J P, Ferrazzoli P, et al. The SMOS soil moisture retrieval algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(5): 1384-1403.
|
19 |
Mahmoodi A, Buchan I.Algorithm theoretical basis document (ATBD) for the SMOS level 2 soil moisture processor development continuation project[C]∥ Eur. Space Agency Array Syst. Comput. Inc., Toronto, ON, Canada, Tech. Rep. SO-TN-ARR-L2PP-0037, 2011.
|
20 |
Panciera R, Walker J P, Kalma J D, et al. Evaluation of the SMOS L-MEB passive microwave soil moisture retrieval algorithm[J]. Remote Sensing of Environment, 2009, 113(2): 435-444.
|
21 |
Dorigo W A, Wagner W, Hohensinn R, et al. The international soil moisture network: A data hosting facility for global in situ soil moisture measurements[J]. Hydrology and Earth System Sciences, 2011, 15(5): 1675-1698.
|
22 |
Dorigo W A, Xaver A, Vreugdenhil M, et al. Global automated quality control of in situ soil moisture data from the International Soil Moisture Network[J]. Vadose zone journal, 2013, 12(3): 1-21.
|
23 |
Hengl T, Mendes De Jesus J, Heuvelink G B M, et al. SoilGrids250m: Global gridded soil information based on machine learning[J]. PLOS ONE, 2017, 12(2): e169748.DOI: .
doi: 10.1371/journal.pone.0169748
|
24 |
Talone M, Portabella M, Martinez J, et al. About the optimal grid for SMOS Level 1C and Level 2 products[J]. IEEE Geoscience and Remote Sensing Letters,2015,12(8):1630-1634.
|