Please wait a minute...
img

Wechat

Remote Sensing Technology and Application  2022, Vol. 37 Issue (6): 1392-1403    DOI: 10.11873/j.issn.1004-0323.2022.6.1392
    
Study on the Difference Characteristics between SMAP L2 Multi-scale Soil Moisture Data and ISMN Filed Measurement
Jianting Huang(),Na Yang(),Chao Ma
School of Surveying and Land Information Engineering,Henan Polytechnic University,Jiaozuo 454000,China
Download:  HTML  PDF (2473KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The level 2 (L2) soil moisture data of SMAP satellite is a direct retrieval result, which can reflect its comprehensive ability of soil moisture retrieval from models, algorithms, parameters and other aspects. At this level, SMAP designed soil moisture data at multiple scales including L2_SM_P(36 km)、L2_SM_P_E(9 km) and L2_SM_SP(3 km and 1 km),the soil moisture data can meet different experimental and application requirements. In this paper, the difference characteristics between SMAP L2 soil moisture data and ISMN measured data are studied and analyzed by using the ISMN ground measured soil moisture data as reference, Bias, root mean square error (RMSE), unbiased root mean square error (ubRMSE) and correlation coefficient (R) as analysis indicators. The results show that under different static conditions (climate type, soil property and vegetation type), vegetation has the largest impact on the difference, while soil property has the smallest impact; Under different dynamic conditions (surface soil moisture, vegetation optical depth and surface temperature), vegetation optical depth and surface soil moisture have a greater impact on the difference, while surface temperature has a smaller impact; Among the four SMAP L2 soil moisture data with different spatial scales, the difference between the 9km data and the ISMN ground measured data is the smallest, followed by the 36km data, 3km data and 1km data scales; According to the static and dynamic conditions, the differences between the 36km and 9km scale data and the ISMN ground measured data are similar, and the differences between the 3km and 1km data are similar.

Key words:  Soil moisture      SMAP      ISMN      Difference characteristics     
Received:  21 March 2022      Published:  15 February 2023
ZTFLH:  TP701  
Corresponding Authors:  Na Yang     E-mail:  hjt19980419@163.com;yangna@hpu.edu.cn
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Jianting Huang
Na Yang
Chao Ma

Cite this article: 

Jianting Huang,Na Yang,Chao Ma. Study on the Difference Characteristics between SMAP L2 Multi-scale Soil Moisture Data and ISMN Filed Measurement. Remote Sensing Technology and Application, 2022, 37(6): 1392-1403.

URL: 

http://www.rsta.ac.cn/EN/10.11873/j.issn.1004-0323.2022.6.1392     OR     http://www.rsta.ac.cn/EN/Y2022/V37/I6/1392

观测网络国家数量
SCAN美国71
SNOTEL美国48
USCRN美国89
SMOSMANIA法国14
FR-Aqui法国2
HOAL奥地利12
BIEBRZA-S-1波兰6
NGARI中国4
MAQU中国4
Table 1  ISMN stations pass quality control
Fig.1  Distribution of ISMN stations pass quality control
黏土含量网格边长数量砂土平均含量
0—0.1

36 km

9,3,1 km

21

27

0.74

0.78

0.1—0.2

36 km

9,3,1 km

68

43

0.49

0.46

0.2—0.3

36 km

9,3,1 km

102

103

0.39

0.37

>0.3

36 km

9,3,1 km

41

59

0.24

0.23

Table 2  Classification of soil properties (clay)
砂土含量网格边长数量黏土平均含量
0—0.2

36 km

9,3,1 km

33

43

0.32

0.37

0.2—0.4

36 km

9,3,1 km

70

93

0.27

0.27

0.4—0.6

36 km

9,3,1 km

91

55

0.21

0.22

>0.6

36 km

9,3,1 km

38

41

0.11

0.10

Table 3  Classification of soil properties (sandy)
植被类型IGBP植被分类数量合计
多树草原多树草原1212
森林常绿针叶林2051
常绿阔叶林5
落叶阔叶林3
混交林23
农田农田3575
农田/天然植被40
草地草地6767
灌木稀疏灌木丛2121
裸土裸露或稀疏植被55
Table 4  Classification of vegetation types
Fig.2  Situation of soil properties and vegetation types under various climate types
Fig.3  Situation of soil properties under various vegetation types
Fig.4  Accuracy performance of SMAP products under different climatic conditions
Fig.5  Accuracy performance of SMAP products under different soil properties
Fig.6  Accuracy performance of SMAP products under different vegetation types
Fig.7  Variation of soil moisture difference between SMAP L2 and ISMN with soil moisture
最小值最大值
多树草原0.2710.663
森林0.3761.181
农田0.0920.671
草地0.0160.388
灌木0.0120.213
裸土00.163
Table 5  Vegetation optical depth range corresponding to various vegetation types
Fig.8  Variation of soil moisture difference between SMAP L2 and ISMN with vegetation optical depth
Fig.9  Variation of soil moisture difference between SMAP L2 and ISMN with land surface temperature
1 Zhao Tianjie. New development and future prospect of L-band passive microwave retrieval of soil moisture[J].Progress In Geography,2018,37(2):198-213.
1 赵天杰.被动微波反演土壤水分的L波段新发展及未来展望[J]. 地理科学进展, 2018,37(2):198-213.
2 Noormets A, Gavazzi M, Strickland S,et al.Changes in tempera-ture-moisture covariance could increase soil carbon loss[J].Nature Precedings,2007. DOI: .
doi: 10.1038/npre.2007. 290.1
3 Green J K, Seneviratne S I, Berg A M, et al. Large influence of soil moisture on long-term terrestrial carbon uptake[J]. Nature,2019,565(7740):476-479. DOI: .
doi: 10.1038/s41586-018-0848-x
4 Makhnykina A V, Prokushkin A S, Menyailo O V, et al. The impact of climatic factors on CО2 Emissions from soils of Middle-Taiga forests in Central Siberia: Emission as a function of soil temperature and moisture[J]. Russian Journal of Ecology,2020,51(1):46-56. DOI: .
doi: 10.1134/S106741362 0010063
5 Humphrey V, Berg A, Ciais P,et al.Soil moisture-atmosphere feedback dominates land carbon uptake variability[J]. Nature, 2021,592(7852):65-69.DOI: .
doi: 10.1038/s41586-021-03325-5
6 Singh S, Mayes M A, Shekoofa A, et al. Soil organic carbon cycling in response to simulated soil moisture variation under field conditions[J]. Scientific Reports,2021,11(1): 10841. DOI: .
doi: 10.1038/s41598-021-90359-4
7 Wu R, Davison M R, Gao Y, et al. Moisture modulates soil reservoirs of active DNA and RNA viruses[J]. Communications Biology, 2021, 4(1): 992. DOI: .
doi: 10.1038/s42003-021-02514-2
8 Koster R D, Dirmeyer P A, Guo Z, et al. Regions of strong coupling between soil moisture and precipitation[J]. Science, 2004,305(5687):1138-1140. DOI: .
doi: 10.1126/science.1100217
9 Taylor C M, Gounou A, Guichard F, et al. Frequency of Sahelian storm initiation enhanced over mesoscale soil-moisture patterns[J]. Nature Geoscience, 2011, 4(7): 430-433. DOI: .
doi: 10.1038/ngeo1173
10 Guillod B P, Orlowsky B, Miralles D G, et al. Reconciling spatial and temporal soil moisture effects on afternoon rainfall[J]. Nature Communications,2015,6(1):6443. DOI: .
doi: 10. 1038/ncomms7443
11 Reich P B, Sendall K M, Stefanski A,et al. Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture[J]. Nature, 2018, 562(7726): 263-267. DOI: .
doi: 10.1038/s41586-018-0582-4
12 Rigden A J, Mueller N D, Holbrook N M, et al. Combined influence of soil moisture and atmospheric evaporative demand is important for accurately predicting US maize yields[J]. Nature Food, 2020, 1(2): 127-133. DOI: .
doi: 10.1038/s43016-020-0028-7
13 Lesk C, Coffel E, Winter J, et al. Stronger temperature-moisture couplings exacerbate the impact of climate warming on global crop yields[J]. Nature Food,2021,2(9):683-691. DOI: .
doi: 10.1038/s43016-021-00341-6
14 Hirschi M, Seneviratne S I, Alexandrov V, et al. Observational evidence for soil-moisture impact on hot extremes in southeastern Europe[J]. Nature Geoscience, 2011, 4(1): 17-21. DOI: .
doi: 10.1038/ngeo1032
15 Zhang J, Yang Z, Wu L, et al. Summer high temperature extremes over Northeastern China predicted by spring soil moisture[J]. Scientific Reports,2019,9(1):12577. DOI: .
doi: 10.1038/s41598-019-49053-9
16 Hong S Y, Kalnay E. Role of sea surface temperature and soil-moisture feedback in the 1998 Oklahoma-Texas drought[J]. Nature, 2000, 408(6814): 842-844. DOI: .
doi: 10.1038/35048548
17 Liu L, Gudmundsson L, Hauser M, et al. Soil moisture dominates dryness stress on ecosystem production globally[J]. Nature Communications, 2020, 11(1): 4892. DOI: .
doi: 10.1038/s41467-020-18631-1
18 Zhou S, Williams A P, Lintner B R,et al. Soil moisture-atmosphere feedbacks mitigate declining water availability in drylands[J]. Nature Climate Change, 2021, 11(1): 38-44. DOI: .
doi: 10.1038/s41558-020-00945-z
19 Hu W, Ran J, Dong L,et al.Aridity-driven shift in biodiversity-soil multifunctionality relationships[J]. Nature Communications,2021,12(1):5350.DOI: .
doi: 10.1038/s41467-021-25641-0
20 Entekhabi D, Njoku E G, O’Neill P E, et al. The Soil Moisture Active Passive (SMAP) mission[J]. Proceedings of the IEEE,2010,98(5):704-716. DOI: .
doi: 10.1109/JPROC. 2010. 2043918
21 Brodzik M J, Billingsley B, Haran T, et al. EASE-Grid 2.0:Incremental but significantimprovements for Earth-Gridded data Sets[J]. ISPRS International Journal of Geo-Information 2012,1:32-45. DOI: .
doi: 10.3390/ijgi1010032
22 O’Neill P E, Chan S, Njoku E G,et al. SMAP L2 Radiometer Half-Orbit 36 km EASE-Grid soil moisture, Version7[DS/OL].NASA National Snow and Ice Data Center DAAC,2020(2020)[2021-12-09]. DOI: .
doi: 10.5067/F1TZ0CBN1F5N
23 O’Neill P E, Chan S, Njoku E G, et al. SMAP Enhanced L2 Radiometer Half-Orbit 9 km EASE-Grid Soil Moisture, Version 4[DS/OL]. NASA National Snow and Ice Data Center DAAC, 2020(2020)[2021-12-09]. DOI: .
doi: 10.5067/Q8J8E3A89923
24 Das N, Entekhabi D, Dunbar R S, et al. SMAP/Sentinel-1 L2 Radiometer/Radar 30-Second Scene 3 km EASE-Grid Soil Moisture, Version 3[DS/OL]. NASA National Snow and Ice Data Center DAAC, 2020(2020)[2021-12-09]. . DOI: .
doi: 10.5067/ASB0EQO2LYJV
25 Reichle R, De Lannoy G, Koster R D,et al. SMAP L4 Global 3-hourly 9 km EASE-Grid Surface and Root Zone Soil Moisture Analysis Update, Version 5[DS/OL]. NASA National Snow and Ice Data Center DAAC, 2020(2020)[2021-12-09]. DOI: .
doi: 10.5067/0D8JT6S27BS9
26 Chan S K, Bindlish R, O’Neill P E, et al. Assessment of the SMAP passive soil moisture product[J]. IEEE Transactions on Geoscience and Remote Sensing,2016,54(8):4994-5007. DOI: .
doi: 10.1109/TGRS.2016.2561938
27 Chen Q, Zeng J, Cui C, et al. Soil moisture retrieval from SMAP: A validation and error analysis study using ground-based observations over the little Washita Watershed[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018,56(3):1394-1408.DOI: .
doi: 10.1109/TGRS.2017.2762462
28 Chan S K, Bindlish R, O’Neill P, et al. Development and assessment of the SMAP enhanced passive soil moisture product[J]. Remote Sensing of Environment, 2018, 204: 931-941. DOI: .
doi: 10.1016/j.rse.2017.08.025
29 Das N N, Entekhabi D, Dunbar R S, et al. The SMAP and copernicus Sentinel-1A/B microwave active-passive high resolution surface soil moisture product[J]. Remote Sensing of Environment,2019,233:111380. DOI: .
doi: 10.1016/j.rse. 2019. 111380
30 Zeng J, Chen K S, Bi H, et al. A preliminary evaluation of the SMAP radiometer soil moisture product over united states and europe using ground-based measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4929-4940. DOI: .
doi: 10.1109/TGRS.2016.2553085
31 Li C, Lu H, Yang K, et al. The Evaluation of SMAP enhanced soil moisture products using high-resolution model simulations and in-situ observations on the Tibetan Plateau[J]. Remote Sensing, 2018, 10(4): 535. DOI: .
doi: 10.3390/rs10040535
32 Zheng X M, Bai Y, Jiang T,et al. Evaluation of SMAP L2/L3 passive soil moisture products using in-situ data from a dense observation network over agricultural area in Northeast China[C]∥IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama,Japan: IEEE,2019:6949-6952[2021-12-08]. DOI: .
doi: 10.1109/IGARSS. 2019.8898042
33 Zhang R, Kim S, Sharma A. A domprehensive validation of the SMAP enhanced level-3 soil moisture product using ground measurements over varied climates and landscapes[J]. Remote Sensing of Environment, 2019, 223: 82-94. DOI: .
doi: 10.1016/j.rse.2019.01.015
34 Xu X. Evaluation of SMAP level 2, 3, and 4 soil moisture datasets over the great lakes region[J]. Remote Sensing, 2020, 12(22): 3785. DOI: .
doi: 10.3390/rs12223785
35 Al-Yaari A, Wigneron J P, Kerr Y, et al. Evaluating soil moisture retrievals from ESA’s SMOS and NASA’s SMAP brightness temperature datasets[J]. Remote Sensing of Environment,2017,193:257-273. DOI: .
doi: 10.1016/j.rse.2017. 03.010
36 Ebrahimi-Khusfi M, Alavipanah S K, Hamzeh S, et al. Comparison of soil moisture retrieval algorithms based on the synergy between SMAP and SMOS-IC[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 67: 148-160. DOI: .
doi: 10.1016/j.jag.2017.12.005
37 Wu K, Ryu D, Nie L, et al. Time-variant error characterization of SMAP and ASCAT soil moisture using triple collocation analysis[J]. Remote Sensing of Environment, 2021, 256: 112324. DOI: .
doi: 10.1016/j.rse.2021.112324
38 Burgin M S, Colliander A, Njoku E G, et al. A comparative study of the SMAP passive soil moisture product with existing satellite-based soil moisture products[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5): 2959-2971. DOI: .
doi: 10.1109/TGRS.2017.2656859
39 Chen F, Crow W T, Bindlish R, et al. Global-Scale evaluation of SMAP, SMOS and ASCAT soil moisture products using triple Collocation[J]. Remote Sensing of Environment, 2018, 214: 1-13. DOI: .
doi: 10.1016/j.rse.2018.05.008
40 Kim H, Parinussa R, Konings A G, et al. Global-scale assessment and combination of SMAP with ASCAT (Active) and AMSR2 (Passive) soil moisture products[J]. Remote Sensing of Environment, 2018, 204: 260-275. DOI: .
doi: 10.1016/j.rse.2017.10.026
41 El-Hajj M, Baghdadi N, Zribi M, et al. Evaluation of SMOS, SMAP, ASCAT and Sentinel-1 soil moisture products at sites in Southwestern France[J]. Remote Sensing, 2018, 10(4): 569. DOI: .
doi: 10.3390/rs10040569
42 Cui C, Xu J, Zeng J, et al. Soil moisture mapping from satellites: An intercomparison of SMAP, SMOS, FY3B, AMSR2, and ESA CCI over two dense network regions at different spatial scales[J]. Remote Sensing, 2017, 10(2): 33. DOI: .
doi: 10.3390/rs10010033
43 Al-Yaari A, Wigneron J P, Dorigo W, et al. Assessment and inter-comparison of recently developed/reprocessed microwave satellite soil moisture products using ISMN ground-based measurements[J]. Remote Sensing of Environment, 2019, 224: 289-303. DOI: .
doi: 10.1016/j.rse.2019.02.008
44 Ma H, Zeng J, Chen N, et al. Satellite surface soil moisture from SMAP, SMOS, AMSR2 and ESA CCI: A comprehensive assessment using global ground-based observations[J]. Remote Sensing of Environment, 2019, 231: 111215. DOI: .
doi: 10.1016/j.rse.2019.111215
45 Zeng J, Shi P, Chen K-S, et al. Assessment and error analysis of satellite soil moisture products over the third pole[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021: 1-18. DOI: .
doi: 10.1109/TGRS.2021.3116078
46 Dorigo W A, Wagner W, Hohensinn R, et al. The international soil moisture network: A data hosting facility for global in situ soil moisture measurements[J]. Hydrology and Earth System Sciences, 2011, 15(5): 1675-1698. DOI: .
doi: 10.5194/hess-15-1675-2011
47 Dorigo W A, Xaver A, Vreugdenhil M, et al. Global automated quality control of in-situ soil moisture data from the international soil moisture network[J]. Vadose Zone Journal, 2013, 12(3): vzj2012.0097. DOI: .
doi: 10.2136/vzj2012.0097
48 Wigneron J P, Laguerre L, Kerr Y H. A Simple parameterization of the L-band microwave emission from rough agricultural soils[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(8): 1697-1707. DOI: .
doi: 10.1109/36.942548
49 Peel M C, Finlayson B L, Mcmahon T A. Updated world map of the Ko¨ppen-Geiger climate classification[J]. Hydrology and Earth System Sciences, 2007, 11(5): 1633-1644.
50 Friedl M A, Sulla-Menashe D, Tan B, et al. MODIS collection 5 global land cover: Algorithm refinements and characterization of new datasets[J]. Remote Sensing of Environment, 2010, 114(1): 168-182. DOI: .
doi: 10.1016/j.rse.2009.08.016
51 Zhao T, Hu L, Shi J, et al. Soil moisture retrievals using L-band radiometry from variable angular ground-based and airborne observations[J]. Remote Sensing of Environment, 2020, 248: 111958. DOI: .
doi: 10.1016/j.rse.2020.111958
52 Zeng J Y, Shi P F, Chen K S,et al.On the relationship between radar backscatter and radiometer brightness temperature from SMAP[J]. IEEE Transactions on Geoscience and Remote Sensing,2022,60:16. DOI: .
doi: 10.1109/TGRS.2021.3115140
53 Zhao T, Shi J, Entekhabi D, et al. Retrievals of soil moisture and vegetation optical depth using a multi-channel collaborative algorithm[J]. Remote Sensing of Environment, 2021, 257: 112321. DOI: .
doi: 10.1016/j.rse.2021.112321
54 Li X J. A new SMAP soil moisture and vegetation optical depth product (SMAP-IB): Algorithm, assessment and inter-comparison[J]. Remote Sensing of Environment,2022,271:112921. DOI: .
doi: 10.1016/j.rse.2022.112921
55 Singh G, DAS N N, PANDA R K, et.al. Validation of SMAP soil moisture products using ground-based observations for the paddy dominated tropical region of India[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 8479-8491.
[1] XU Xiao-jun,DU Hua-qiang,ZHOU Guo-mo,FAN Wen-yi. Review on Correlation Analysis of Independent Variables in Estimation Models of Vegetation Biomass Based on Remote Sensing[J]. Remote Sensing Technology and Application, 2008, 23(2): 239 -247 .
[2] Yu Wenping,Ma Mingguo. Validation of the MODIS Land Surface Temperature Products—A Case Study of the Heihe River Basin[J]. Remote Sensing Technology and Application, 2011, 26(6): 705 -712 .
[3] Li Weiwei,Husi Letu,Chen Hongbin,Shang Huazhe. Estimation of Surface Solar Radiation Using MODIS Satellite Data and RSTAR Model[J]. Remote Sensing Technology and Application, 2017, 32(4): 643 -650 .
[4] Chunliang Zhao,Wenbo Xu,Jinlong Fan. Validation of Narrow-band Surface Albedo Retrieved from FY-3C MERSI Satellite Data[J]. Remote Sensing Technology and Application, 2020, 35(1): 153 -162 .
[5] Zongsheng Zheng,Chenyu Hu,Dongmei Huang,Guoliang Zou,Zhaorong Liu,Wei Song. Research on Transfer Learning Methods for Classification of Typhoon Cloud Image[J]. Remote Sensing Technology and Application, 2020, 35(1): 202 -210 .
[6] Lingmei Jiang,Huizhen Cui,Gongxue Wang,Jianwei Yang,Jian Wang,Fangbo Pan,Xu Su,Xiyao Fang. Progress on Remote Sensing of Snow, Surface Soil Frozen/Thaw State and Soil Moisture[J]. Remote Sensing Technology and Application, 2020, 35(6): 1237 -1262 .
[7] Duo Chu,Caiwang Dunzhu,Lawang Dunzhu,Suolang Tajie,Pingcuo Sangdan,Zhaxi Duoji,Mingma Ciren,Cuo Ping. Monitoring Glacier Avalanches in Tibet Using Sentinel-2 Imagery[J]. Remote Sensing Technology and Application, 2022, 37(6): 1289 -1301 .
[8] Shaojie Du,Tianjie Zhao,Jiancheng Shi,Chunfeng Ma,Defu Zou,Zhen Wang,Panpan Yao,Zhiqing Peng,Jingyao Zheng. Sentinel-1 and Sentinel-2 Synergistic Retrieval of Surface Soil Moisture[J]. Remote Sensing Technology and Application, 2022, 37(6): 1404 -1413 .
[9] Yuling Huang,Kai Liu,Shudong Wang,Dacheng Wang,Feng Yuan,Baolin Wang,Wen Jing,wei Wang. Comparison and Assessment of Remote Sensing and Model-based Soil Moisture Products in Typical Regions of North China[J]. Remote Sensing Technology and Application, 2022, 37(6): 1414 -1426 .
[10] Xiyao Fang,Lingmei Jiang,Huizhen Cui. Soil Moisture Retrieval in the Tibetan Plateau based on Sentinel-1 Radar Data[J]. Remote Sensing Technology and Application, 2022, 37(6): 1447 -1459 .