Please wait a minute...


Remote Sensing Technology and Application  2022, Vol. 37 Issue (6): 1504-1512    DOI: 10.11873/j.issn.1004-0323.2022.6.1504
Trends and Continuity Analysis of Vegetation Change in Huangshui River Basin from 2000 to 2019
Rui Wang1(),Dezhen Bai1,Fang Yin2,Lei Liu3()
1.Qinghai Research and Design institute of Environmental Sciences,Xining 810000,China
2.School of Land Engineering,Chang’an University,Xi’an 710054,China
3.School of Earth Sciences and Resources,Chang’an University,Xi’an 710054,China
Download:  HTML  PDF (4316KB) 
Export:  BibTeX | EndNote (RIS)      

Vegetation change characteristics are the important contents of watershed ecological monitoring and the most critical information for environmental protection. In this study, MODIS EVI data products and Hurst index were used to analyze the temporal and spatial variation trend of vegetation in Huangshui River Basin from 2000 to 2019 and its continuity analysis. Combined with the meteorological observation data of temperature and precipitation, this paper analyzed the influencing factors of vegetation change in 9 counties and districts in Huangshui River Basin. The results show that from 2000 to 2019, the maximum annual EVI increase of vegetation in the Huangshui River Basin is 0.0063, and different counties and districts in the upper, middle and lower reaches show different change characteristics under the influence of temperature, precipitation, land use and other factors. For the annual EVI maximum, the increasing trend of the downstream is the most significant, and the change intensity of the river channel area is more obvious. Based on Hurst index analysis, the trend has a certain continuity in the short term. This study revealed the importance of vegetation monitoring trends in the plateau watershed by monitoring the temporal changes of vegetation, and provided a certain data support and scientific basis for watershed management and sustainable development.

Key words:  Remote sensing      Fractional vegetation cover      EVI      Google Earth Engine     
Received:  07 April 2021      Published:  15 February 2023
ZTFLH:  TP79  
Corresponding Authors:  Lei Liu     E-mail:;
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
Articles by authors
Rui Wang
Dezhen Bai
Fang Yin
Lei Liu

Cite this article: 

Rui Wang,Dezhen Bai,Fang Yin,Lei Liu. Trends and Continuity Analysis of Vegetation Change in Huangshui River Basin from 2000 to 2019. Remote Sensing Technology and Application, 2022, 37(6): 1504-1512.

URL:     OR

Fig.1  Land use and cover of the Huangshui Basin at 2018
Fig.2  Spatial patterns of maximum EVI of 2000 and 2019 in the Huangshui Basin
Fig.3  Spatial patterns of annual maximum EVI change trend from 2000 to 2019 and the coefficient of determination R2 in the Huangshui Basin
Tabel 1  Area percent of different vegetation change trend levels in the nine counties ofthe Huangshui Basin during 2000—2019
Fig.4  The change trend of annual maximum EVI of nine counties in Huangshui Basin from 2000 to 2019
Tabel 2  Correlation coefficients between averaged annual maximum EVI and meteorological parameters in different regions of Huangshui basin
Fig.5  The spatial patterns of Hurst exponent in the Huangshui Basin
变化趋势上 游 中 游 下 游
变化趋势最小值-0.022 4-0.025 6-0.037 1-0.031 2-0.039 6-0.032 8-0.042 0-0.027 7-0.038 8
变化趋势最大值0.025 70.021 10.022 90.020 80.023 50.021 60.020 10.025 90.022 9
变化趋势均值0.003 20.003 10.003 60.002 20.002 50.006 30.003 10.008 90.005 2
变化趋势标准差0.003 50.003 00.010 20.002 90.005 40.004 80.004 80.005 40.005 7
H指数均值0.515 20.517 60.635 70.504 70.530 10.523 00.521 00.506 10.567 5
Tabel 3  Area percent of different vegetation change trend levels in the nine counties of the Huangshui Basin during 2000—2019
1 Li Xin, Liu Shaomin, Ma Mingguo, et al. HiWATER: An integrated remote sensing experiment on hydrological and ecological processes in Heihe River Basin[J]. Advances in Earth Science, 2012, 27(5):481-498.
1 李新, 刘绍民, 马明国, 等. 黑河流域生态—水文过程综合遥感观测联合试验总体设计[J]. 地球科学进展, 2012, 27(5):481-498.
2 Ma Huijuan, Gao Xiaohong, Gu Xiaotian. Research on land use/land cover classification in complex topography based on random forest method[J]. Journal of Geo-Information Science,2019,21(3):359-371.
2 马慧娟,高小红,谷晓天.随机森林方法支持的复杂地形区土地利用/土地覆被分类研究[J].地球信息科学学报,2019,21(3):359-371.
3 Shi Feifei, Gao Xiaohong, Yang Lingyu, et al. Study on classification of typical crops in Huangshui watershed based on HJ-1A hyperspectral remote sensing data[J]. Remote Sensing Technology and Application,2017,32(2):206-217.
3 史飞飞,高小红,杨灵玉,等.基于HJ-1A高光谱遥感数据的湟水流域典型农作物分类研究[J].遥感技术与应用,2017,32(2):206-217.
4 He Xiaohui, Wang Fang, Gong Jiaguo, et al. Study on regional hydrological change in Xining section of Huangshui River under climate change[J]. Yellow River,2015,37(9):11-13,16.
4 赫晓慧,王芳,龚家国,等.气候变化下湟水河西宁段区域水文变化研究[J].人民黄河,2015,37(9):11-13,16.
5 Ye Peilong, Zhang Qiang, Wang Ying, et al. Climate change and its effects on ecological vegetation and runoff in the upper reaches of the Yellow River during 1980—2018[J].Acta Scien-tiae Atmosphere Sinica,2020,43(6):967-979.
5 叶培龙,张强,王莺,等.1980—2018年黄河上游气候变化及其对生态植被和径流量的影响[J].大气科学学报,2020,43(6):967-979.
6 Zhang Tiafeng, Zhu Xide, Wang Yongjian, et al. Quantitative assessment of the impacts of climate change and human activities on runoff in the Huangshui River Basin[J]. Resources Science,2014,36(11):2256-2262.
6 张调风,朱西德,王永剑,等.气候变化和人类活动对湟水河流域径流量影响的定量评估[J].资源科学, 2014,36(11):2256-2262.
7 Cai Chunling. Case study on environmental risk of construction project[J]. Industrial Safety and Environmental Protection,2010,36(8):26-28.
7 蔡春玲.建设项目环境风险实例分析[J].工业安全与环保,2010,36(8):26-28.
8 Li Xupu, Zhang Fuping, Wei Yongfen, et al. Research on dynamic changes of the vegetation coverage levels in Heihe River Basin[J]. Areal Research & Development, 2013, 32(3):108-114.
8 李旭谱, 张福平, 魏永芬, 等. 黑河流域植被覆盖程度变化研究[J]. 地域研究与开发, 2013, 32(3):108-114.
9 Han Huibang, Ma Mingguo, Yan Ping. Periodicity analysis of NDVI time series and its relationship with climatic factors in the Heihe River Basin in China[J]. Remote Sensing Technology and Application, 2011, 26(5): 554-560.
9 韩辉邦, 马明国, 严平. 黑河流域 NDVI 周期性分析及其与气候因子的关系[J]. 遥感技术与应用, 2011, 26(5): 554-560.
10 Han Huibang, Ma Mingguo, Ma Shoucun, et al. Vegetation change and its climatic driving factors in Qinghai Province in recent 30 years[J].Arid Land Research,2017,34(5):1164-1174.
10 韩辉邦,马明国,马守存,等. 近30 a青海省植被变化及其气候驱动因子分析[J].干旱区研究,2017,34(5):1164-1174.
11 Du Mei, Zhao Jianyong. Spatiotemporal variation characteristics of vegetation cover in Huangshui River Basin based on MODIS NDVI[J]. Journal of Qinghai University, 2020, 38(6):77-84
11 杜梅,赵健赟.基于MODIS NDVI的湟水流域植被覆盖时空变化特征分析[J].青海大学学报,2020,38(6):77-84.
12 Liu X, Hu G, Chen Y, et al. High-resolution multi-temporal mapping of global urban land using landsat images based on the Google Earth Engine platform[J]. Remote Sensing of Environment, 2018, 209: 227-239.
13 Hao Binfei, Han Xujun, Ma Mingguo, et al. Research process on the application of Google Earth Engine in geoscience and environmental sciences[J]. Remote sensing Technology and Application, 2018, 33(4):600-611.
13 郝斌飞, 韩旭军, 马明国, 等. Google Earth Engine在地球科学与环境科学中的应用研究进展[J]. 遥感技术与应用,2018,33(4):600-611.
14 Gorelick N, Hancher M, Dixon M, et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone[J]. Remote Sensing of Environment,2017,202:18-27. DOI: .
doi: 10. 1016/j.rse.2017.06.031
15 Kong D, Zhang Y, Gu X, et al. A robust method for reconstructing global MODIS EVI time series on the Google Earth Engine[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 155(SEP.):13-24.
16 Vermeulen L M, Munch Z, Palmer A. Fractional vegetation cover estimation in Southern African rangelands using spectral mixture analysis and Google Earth Engine[J]. Computers and Electronics in Agriculture, 2021, 182(12):105980.DOI: .
doi: 10.1016/j.compag.2020.105980
17 Tan Meibao, Ran Youhua, Su Yang, et al. Characteristics of vegetation change and its sustainability assessment in the Heihe River Basin from 2001 to 2017[J].Remote Sensing Technology and Application, 2020, 35 (2):71-80.
17 谭美宝, 冉有华, 苏阳,等. 黑河流域2001~2017年植被变化特征及其可延续性评价[J]. 遥感技术与应用, 2020,35(2):71-80.
18 Statistics Bureau of Qinghai Province Statistical Yearbook of Qinghai Province 2016[M]. Beijing: China Statistics Press, 2016.
18 青海省统计局 编. 青海省统计年鉴2016[M]. 北京:中国统计出版社, 2016.
19 Cai B F, Yu R. Advance and evaluation in the long time series vegetation trends research based on remote sensing[J]. Journal of Remote Sensing, 2009, 13(6): 1170-1186.
20 Tamiminia H, Salehi B, Mahdianpari M, et al. Google Earth Engine for Geo-Big Data applications: A meta-analysis and systematic review[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2020. DOI: .
doi: 10.1016/j.isprsjprs.2020.04.001
21 Jiang W, Yuan L, Wang W,et al. Spatio-temporal analysis of vegetation variation in the Yellow River Basin[J]. Ecological Indicators,2015,51:117-126.
22 Long Shuang, Guo Zhengfei, Xu Jiao,et al.Analysis of spatialtemporal variation characteristics of vegetation coverage in China based on Google Earth Engine[J]. Remote Sensing Technology and Application, 2020, 35(2):326-334.
22 龙爽,郭正飞,徐粒,等.基于Google Earth Engine的中国植被覆盖度时空变化特征分析[J].遥感技术与应用,2020,35(2):326-334.
[1] XU Xiao-jun,DU Hua-qiang,ZHOU Guo-mo,FAN Wen-yi. Review on Correlation Analysis of Independent Variables in Estimation Models of Vegetation Biomass Based on Remote Sensing[J]. Remote Sensing Technology and Application, 2008, 23(2): 239 -247 .
[2] Yu Wenping,Ma Mingguo. Validation of the MODIS Land Surface Temperature Products—A Case Study of the Heihe River Basin[J]. Remote Sensing Technology and Application, 2011, 26(6): 705 -712 .
[3] Li Weiwei,Husi Letu,Chen Hongbin,Shang Huazhe. Estimation of Surface Solar Radiation Using MODIS Satellite Data and RSTAR Model[J]. Remote Sensing Technology and Application, 2017, 32(4): 643 -650 .
[4] Chunliang Zhao,Wenbo Xu,Jinlong Fan. Validation of Narrow-band Surface Albedo Retrieved from FY-3C MERSI Satellite Data[J]. Remote Sensing Technology and Application, 2020, 35(1): 153 -162 .
[5] Zongsheng Zheng,Chenyu Hu,Dongmei Huang,Guoliang Zou,Zhaorong Liu,Wei Song. Research on Transfer Learning Methods for Classification of Typhoon Cloud Image[J]. Remote Sensing Technology and Application, 2020, 35(1): 202 -210 .
[6] Lingmei Jiang,Huizhen Cui,Gongxue Wang,Jianwei Yang,Jian Wang,Fangbo Pan,Xu Su,Xiyao Fang. Progress on Remote Sensing of Snow, Surface Soil Frozen/Thaw State and Soil Moisture[J]. Remote Sensing Technology and Application, 2020, 35(6): 1237 -1262 .
[7] Duo Chu,Caiwang Dunzhu,Lawang Dunzhu,Suolang Tajie,Pingcuo Sangdan,Zhaxi Duoji,Mingma Ciren,Cuo Ping. Monitoring Glacier Avalanches in Tibet Using Sentinel-2 Imagery[J]. Remote Sensing Technology and Application, 2022, 37(6): 1289 -1301 .
[8] Jianting Huang,Na Yang,Chao Ma. Study on the Difference Characteristics between SMAP L2 Multi-scale Soil Moisture Data and ISMN Filed Measurement[J]. Remote Sensing Technology and Application, 2022, 37(6): 1392 -1403 .
[9] Shaojie Du,Tianjie Zhao,Jiancheng Shi,Chunfeng Ma,Defu Zou,Zhen Wang,Panpan Yao,Zhiqing Peng,Jingyao Zheng. Sentinel-1 and Sentinel-2 Synergistic Retrieval of Surface Soil Moisture[J]. Remote Sensing Technology and Application, 2022, 37(6): 1404 -1413 .
[10] Yuling Huang,Kai Liu,Shudong Wang,Dacheng Wang,Feng Yuan,Baolin Wang,Wen Jing,wei Wang. Comparison and Assessment of Remote Sensing and Model-based Soil Moisture Products in Typical Regions of North China[J]. Remote Sensing Technology and Application, 2022, 37(6): 1414 -1426 .