Please wait a minute...
img

Wechat

Remote Sensing Technology and Application  2022, Vol. 37 Issue (6): 1513-1524    DOI: 10.11873/j.issn.1004-0323.2022.6.1513
    
Reserach on Spatiotemporal Dynamics of Water Conservation in the Qinba Mountains from 2000 to 2020
Pengjie Zhang(),Xiaofeng Yang,Tao Zhang,Dongming Han,Siyu Chen()
The First Institute of Photogrammetry and Remote Sensing,MNR Xi’an 710054,China
Download:  HTML  PDF (6079KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Based on the principle of water balance, the spatiotemporal changes and the influencing factors of the water conservation capacity in the Shannxi Qinba Mountains were quantified by using MODIS, climate data, the DEM and soil texture data, etc. during the period of 2000—2020. The results showed that ① the water conservation capacity, which ranged from -142.84—419.41 mm, was higher in south and lower in north. The water conservation capacity of each city followed an order of Hanzhong>Ankang>Baoji>Xi’an>Shangluo>Weinan. ② The water conservation capacity decreased at a rate about 13.07 mm/a in recent 21 years. The regions that significant weakened accounted for about 48.36 percent. ③ The changes of the water conservation capacity was mainly closely related to its direct influencing factors, the precipitation and the evapotranspiration and finally the temperature among its indirect influencing factors.

Key words:  The Qinba Mountains      Principle of the water balance      Water conservation capacity      Spatiotemporal variation     
Received:  25 July 2021      Published:  15 February 2023
ZTFLH:  TP79  
Corresponding Authors:  Siyu Chen     E-mail:  827006904@qq.com;15095320573@163.com
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Pengjie Zhang
Xiaofeng Yang
Tao Zhang
Dongming Han
Siyu Chen

Cite this article: 

Pengjie Zhang,Xiaofeng Yang,Tao Zhang,Dongming Han,Siyu Chen. Reserach on Spatiotemporal Dynamics of Water Conservation in the Qinba Mountains from 2000 to 2020. Remote Sensing Technology and Application, 2022, 37(6): 1513-1524.

URL: 

http://www.rsta.ac.cn/EN/10.11873/j.issn.1004-0323.2022.6.1513     OR     http://www.rsta.ac.cn/EN/Y2022/V37/I6/1513

Fig.1  Overview of the study
数据名称产品内容

空间

分辨率

时间

分辨率

用途
MCD43A3地表反照率500 m16 d计算蒸散量
MOD09A1地表反射率500 m8 d计算蒸散量
MOD11A1地表温度和辐射率1 km1 d计算蒸散量
MCD12Q1土地覆盖类型1 km1 a计算地表径流量
MOD15A2叶面积指数1 km8 d计算蒸散量
Table 1  Introduction of MODIS datas
Fig.2  Calculation process of daily evapotranspiration(ET) based on the SEBS model

平均绝

对误差

均方

根误差

日最大降

水量

降水量2015年5月15日0.130.190.25
2015年8月15日0.030.040.53
2015年10月15日0.400.490.25
2020年5月15日0.180.273.64
2020年8月15日0.380.5110.56
2020年10月15日0.310.403.21
Table 2  Precision test result of Precipitation Interpolation
Fig.3  Spatiotemporal relationshps between ET from meteorological stations and SEBS
Fig.4  Spatial distribution of water conservation in the Qinba Mountains
年水源涵养量/mm总面积/km2面积占比/%
合计85 564.63100.00
<023 473.1127.43
0—15031 299.9336.58
150—30018 468.8621.58
300—4507 610.998.90
>4504 711.745.51
Table 3  Statistical results of water conservation in the Qinba Mountains
年水源涵养量县区年水源涵养量年水源涵养量县区年水源涵养量
西安市4.27灞桥区19.27渭南市-85.90华县-90.29
鄠邑区-24.75华阴市-58.53
蓝田县-12.23临渭区-36.25
临潼区9.19潼关县-165.27
长安区-61.19汉中市211.13城固县144.10
周至县49.11佛坪县178.27
宝鸡市84.73陈仓区-33.91汉台区164.81
凤县62.06留坝县65.69
金台区21.54略阳县49.73
眉县-56.50勉县130.93
岐山县-47.39南郑县335.61
太白县188.66宁强县248.05
渭滨区8.19西乡县219.67
安康市144.46白河县-46.19洋县129.80
汉滨区64.63镇巴县479.68
汉阴县155.54商洛市-2.95丹凤县-57.07
岚皋县325.05洛南县57.10
宁陕县147.49山阳县-28.72
平利县173.99商南县-58.13
石泉县135.91商州区44.29
旬阳县-58.52柞水县19.36
镇坪县393.96镇安县-2.81
紫阳县353.72
Table 4  Annual water conservation of cities and counties in the Qinba Mountains
Fig.5  Statiscal result of water conservation capatity in the Qinba Mountains during the period of 2000—2020
  
变化趋势显著性面积/km2占比/%
减少显著41 382.0548.36
不显著38 471.9944.96
无变化显著0.000.00
不显著1.500.00
增加显著56.450.07
不显著5 652.646.61
合计85 564.63100.00
Table 5  Statistical results of water conservation changes in the Qinba Mountains during the period of 2000—2020
水源涵养量降水量蒸散量气温NDVI风速相对湿度日照辐射
水源涵养量1.000.92**-0.73**-0.74**-0.57**-0.380.280.37
降水量0.92**1.00-0.41-0.68**-0.38-0.180.190.28
蒸散量-0.73**-0.411.000.55*0.69**0.56**-0.33-0.38
气温-0.74**-0.68**0.55*1.000.270.14-0.13-0.38
NDVI-0.57**-0.380.69**0.271.000.41-0.22-.470*
风速-0.38-0.180.56**0.140.411.00-0.26-0.23
相对湿度0.280.19-0.33-0.13-0.22-0.261.000.02
日照辐射0.370.28-0.38-0.38-.470*-0.230.021.00
Table 6  Correlation conefficients betweem water conservation capacity and its influencing factors
控制变量水源涵养量
降水量气温1.00**
蒸散量气温、NDVI、风速-1.00**
NDVI蒸散量、日照辐射0.52
气温降水量、蒸散量0.07
风速蒸散量-0.23
相对湿度-0.21
日照辐射NDVI0.22
Table 7  Partial correlation conefficients betweem water conservation capacity and its influencing factors
Fig.7  Trends of Annual precipition、ET、NDVI、temperature and wind of the Qinba Mountains during the period of 2000—2020
1 Zhao Xiao. Spatial and temporal variation of net primary vegetation productivity in Qinling-Daba Mountains, China from 2000 to 2015[D]. Chongqing: Southwest University,2019.赵晓. 2000-2015年秦巴山区植被净初级生产力时空分异研究[D].重庆:西南大学,2019.
2 Zhang Jincheng. Study on spatial-temporal changes of fraction of absorbed photosynthetically active radiation in Qinling-Daba Mountains[D]. Chongqing:Southwest University, 2019.
2 章金城. 秦巴山区植被FPAR时空变化特征研究[D].重庆:西南大学,2019.
3 Kang Yan. Spatial distribution pattern and strategy for water conservation functioin of vegetation in Qinling Mountains[D]. Xi'an: Northwest University, 2005.
3 康艳. 秦岭山地植被水源涵养功能空间分布格局及生态保育策略[D].西安:西北大学,2005.
4 Liu Kang, Ma Naixi, Xu Yanling, et al. Protection and construction of eco-environment in Qinling Mountainous area[J]. Chinese Journal of Ecology,2004, 23(3):157-160.
4 刘康,马乃喜,胥艳玲,等.秦岭山地生态环境保护与建设[J].生态学杂志,2004,23(3):157-160
5 Cao Yelin, Song Jinxi, Li Mingyue, et al. Evaluation of ecosystem water conservation function of Shannxi Province[J]. Journal of Soil and Water Conservation, 2020,34(4):217-223.
5 曹叶琳,宋进喜,李明月,等. 陕西省生态系统水源涵养功能评估分析[J]. 水土保持学报,2020,34(4):217-223.
6 Redhead J W, May L, Oliver T H, et al. National scale evaluation of the InVEST nutrient retention model in the United Kingdom[J]. Science of the Total Environment, 2018,610:666-677.
7 Hamel P, Chaplin-Kramer R, Sim S, et al. A new approach to modeling the sediment retentioin service (InVEST 3.0): Case study of the Cape Fear catchment, North Carolina, USA[J]. Science of the Total Environment, 2015, 524:166-177.
8 Yang D, Liu W, Tang L Y, et al. Estimation of water provision service for monsoon catchments of South China: Applicability of the InVEST model[J]. Landscape and Urban Planning, 2019,182:133-143.
9 Su C H, Fu B J. Evolution of ecosystem services in the Chinese Loess Plateau under climatic and land use chagnes[J]. Global and Planetary Change, 2013,101:119-128.
10 Zhuo Jing, He Huijuan, Zou Jiye. Spatiotemporal variation of water conservation capacity in the Qinling Mountain in recent 15 years[J]. Arid Zone Research, 2017,34(3):604-612.
10 卓静,何慧娟,邹继业.近15a秦岭林区水源涵养量变化特征[J].干旱研究区,2017,34(3):604-612.
11 Ning Yazhou, Zhang Fuping, Feng Qi, et al. Temporal and spatial variation of water conservation function in Qinling Mountain and its influencing factors[J]. Cinese Journal of Ecology, 2020,39(9):3080-3091.
11 宁亚洲,张福平,冯起,等.秦岭水源涵养功能时空变化及其影响因素[J].生态学杂志,2020,39(9):3080-3091.
12 Wang Huiyuan, Song Jinxi, Meng Qing. Analysis of water conservation of Qinling Mountains[J]. Journal of Soil and Water Conservation,2020,34(6):211-218.
12 王辉源,宋进喜,孟清.秦岭水源涵养功能解析[J].水土保持学报,2020,34(6):211-218.
13 Fan Yaning, Liu Kang, Chen Shanshan, et al. Spatial pattern analysis on water conservative functionality of land ecosystem in Northern slope of Qinling Mountains[J]. Bulletin of Soil and Water Conservation,2017,37(2):50-56.
13 范亚宁,刘康,陈姗姗,等.秦岭北麓陆地生态系统水源涵养功能的空间格局[J].水土保持通报,2017,37(2):50-56.
14 Liu Xiaoqing, Zhang Zhenwen, Shen Binggang, et al. Estimation of economic values of water conservation function bu forest in Qinling National Ecology Function Zone[J]. Bulletin of Soil and Water Conservation,2012,32(1):177-180.
14 刘晓清,张振文,沈炳岗,等.秦岭生态功能区森林水源涵功能的经济价值估算[J].水土保持通报,2012,32(1):177-180.
15 Liu Yu, Guo Jianbin, Deng Xiuxiu, et al. Evaluation of potential water conservation function of the soil of three land use types in Huoditang of Qinling Mountains, northwestern China[J]. Journal of Beijing Forestry University, 2016,38(3):73-80.
15 刘宇,郭建斌,邓秀秀,等.秦岭火地塘林区3种土地利用类型的土壤潜在水源涵养功能评价[J].北京林业大学学报,2016,38(3):73-80.
16 Pan Liujie, Zhang Hongfang. Simulation and projection of climate change in Qinling and surrounding areas with NEX-BCC model[J]. Advances in Earth Science,2018,33(9):933-944.
16 潘留杰,张宏芳.NEX-BCC模式对秦岭及周边地区气候变化的模拟及预估[J].地球科学进展,2018,33(9):933-944.
17 Liu Xianfeng, Pan Yaozhong, Zhu Xiufang, et al. Spatiotemporal variation of vegetation coverage in Qinling-Daba Mountains in relation to environmental factors[J]. Acta Geographica Sinica, 2015,70(5):705-716.
17 刘宪锋,潘耀忠,朱秀芳,等.2000-2014年秦巴山区植被覆盖时空变化特征及其归因[J].地理学报,2015,70(5):705-716.
18 Li Yingying, Liu Kang, Hu Sheng, et al. Water conservation functioin of Ziwuling Ecological Area in Shannxi Province[J]. Arid Land Geography,2015,38(3):636-642.
18 李盈盈,刘康,胡胜,等.陕西省子午岭生态功能区水源涵养能力研究[J].干旱地理,2015,38(3):636-642.
19 Zhang Biao, Li Wenhua, Xie Gaodi, et al. Water conservation function and its measurement methods of forest ecosystem[J]. Chinese Journal of Ecology,2009,28(3):529-534.
19 张彪,李文华,谢高地,等.森林生态系统的水源涵养功能及其计量方法[J].生态学杂志,2009,28(3):529-534.
20 Mei Xiaodan, Li Dan, Wang Qiang,et al.Spatial interpolation of precipitation grid data in Xiaoxing′anling Region based on ANUSPLIN[J].Geomatics & Spatial Information Technology,2021,44(12):6-10.
20 梅晓丹,李丹,王强,等.基于ANUSPLIN的小兴安岭地区降水格点数据空间插值[J].测绘与空间地理信息,2021,44(12):6-10.
21 Zhang Yu. Estimation of evapotranspiration in wheat area of Henan Province based on SEBS model[D].Zhengzhou:Zhengzhou University, 2019.
21 张宇.基于SEBS模型的河南省麦区蒸散发估算[D].郑州:郑州大学,2019.
22 Yang Jinliang. Study on estimation of evapotranspiration in agriculture fields of liaocheng city based on SEBS model and remote sensing[D]. Ji'nan:University of Jinan, 2021.
22 杨金梁. 基于SEBS模型的聊城市农田蒸散发遥感估算研究[D].济南:济南大学,2021.
23 Su Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes[J]. Hydrology and Earth System Sciences, 2002,6(1):85-99.
24 Xie Qunxian, Zuo Dakang, Tang Dengyin. Farmland Evaporatioin-Measurement and Calculation[M]. Beijing:China Meteorological Press, 1991:69-82.
24 谢群贤,左大康,唐登银.农田蒸发-测定与计算[M].北京:气象出版社,1991:69-82.
25 Chen Shanshan. Remote sensing analysis of urban evapotranspiration in Shanghai[D]. Shanghai:East China Normal University, 2011.
25 陈姗姗.上海城市蒸散量的遥感分析[D].上海:华东师范大学,2011.
26 Fu Yupeng, Liang Zhongmin, Li Binquan,et al. Revision of SCS runoff model in Weihe River Basin[J].Yellow River,2021,43(5):24-29.
26 付宇鹏,梁忠民,李彬权,等.SCS产流模型在渭河流域的修订研究[J].人民黄河,2021,43(5):24-29.
27 Wang W, Huang X D, Deng J,et al. Spatio-temporal change of snow cover and its response to climate over the Tibetan Plateau based on an improved daily cloud-free snow cover product.[J].Remote Sensing,2015,7(1).DOI: .
doi: 10.3390/rs 70100169
28 Zhuo Jing, He Huijuan, Wang Juan. Esimation of water conservation capacity in the Qinling Mountain[J]. Journal of Shannxi Meteorology, 2015(3):12-16.
28 卓静,何慧娟,王娟.秦岭地区水源涵养能力评估[J].陕西气象,2015(3):12-16.
29 Cao Yelin. The spatio-temporal evolution of water conservation in Qinling Mountains and its response to climate[D]. Xi'an:Northwest University, 2021.
29 曹叶琳. 秦岭水源涵养时空演变及其对气候的响应[D].西安:西北大学,2021.
[1] DING Jing, TANG Jun-wu, LIN Ming-sen. Acquisition of MODIS Ocean Color Satellite Data and Its Data Processing[J]. Remote Sensing Technology and Application, 2003, 18(4): 263 -268 .
[2] WU Chuan-Qiang, WANG Qiao, YANG Zhi-Feng, WEI Bin, SUN Zhong-ping, LIU Xiao-Man. Remote Sensing Analysis in Yangtzi River Estuary and the Inshore Area[J]. Remote Sensing Technology and Application, 2007, 22(6): 707 -709 .
[3] GUAN Min,GU Song-yan,YANG Zhong-dong. Geolocation Method for FY-3 MWHS&rsquo|Remote Sensing Image[J]. Remote Sensing Technology and Application, 2008, 23(6): 712 -716 .
[4] ZHU Shan-you,ZHANG Gui-xin,YIN Qiu,KUANG Ding-bo. The Study on the Retrieval of the Air Temperature Based onMulti-sources Polar Orbit Meteorological Satellite Data[J]. Remote Sensing Technology and Application, 2009, 24(1): 27 -31 .
[5] WANG Jiang-hao,GE Yong. Simulation Analysis of GCP Residuals in the Remote Sensing Image Registration[J]. Remote Sensing Technology and Application, 2011, 26(2): 226 -232 .
[6] Yang Hequn,Zhou Hongmei,Yin Qiu,Han Tao,Ge Weiqiang. Fast Pre-processing of MERSI Data on FY-3 Meteorological Satellite Using IDL[J]. Remote Sensing Technology and Application, 2012, 27(4): 566 -574 .
[7] Cai Huiwen,Yang Jun,Li Xiaojing,Xia Xiang ao. null[J]. Remote Sensing Technology and Application, 2012, 27(6): 961 -966 .
[8] Hou Shanshan,Lei Liping,Guan Xianhua. A General Introduction to Greenhouse Gases Observing Satellite (GOSAT) and Its Products[J]. Remote Sensing Technology and Application, 2013, 28(2): 269 -275 .
[9] Zhao Yongquan,Shan Xiaojun,Tang Ping. Spatial Consistency Analysis and Relative Geometric Correction of Low Spatial Resolution Multi\|source Remote Sensing Data[J]. Remote Sensing Technology and Application, 2014, 29(1): 155 -163 .
[10] Hu Juyang,Tang Shihao,Dong Lixin. Land Surface Temperature Retrieval from FY3A/MERSI[J]. Remote Sensing Technology and Application, 2014, 29(4): 531 -538 .