×
模态框(Modal)标题
在这里添加一些文本
Close
Close
Submit
Cancel
Confirm
×
模态框(Modal)标题
×
ISSN 1004-0323
CN 62-1099/TP
RSS
|
Email Alert
Toggle navigation
Home
About Journal
Editorial Board
Instruction
Journal Online
Current Issue
Online First
Archive
Most Read
Most Download
Most Cited
Subscription
Advertisement
Publication Ethics
Contact Us
中文
Figure/Table detail
Different Spatial Resolutions based on Object-oriented CNN and RF Research on Agricultural Greenhouse Extraction from Remote Sensing Images
Xinyi LIN, Xiaoqin WANG, Zixia TANG, Mengmeng LI, Ruijiao WU, Dehua HUANG
Remote Sensing Technology and Application
, 2024, 39(
2
): 315-327. DOI:
10.11873/j.issn.1004-0323.2024.2.0315
特征类别
特征名称
数量
光谱特征
光谱最大差分、各波段均值(Mean B、Mean G、Mean R、Mean NIR)、亮度值、归一化植被指数、归一化差值湿度指数
8
纹理特征
均值、方差、熵、同质度、对比度、非相似性、角二阶矩、相关性(0°、45°、90°、135°)
32
几何特征
面积、长宽比、边界长度、不对称性、形状指数、密度、主要方向、紧凑度、圆、边界指数
10
Table 2
Feature variables for agricultural greenhouse extraction
Other figure/table from this article
Fig.1
Distribution of key research areas and sample points in Fu'an City
Table 1
Remote sensing image acquisition in the study area
Fig.2
Example of local true color band combinations of canopies with different spatial resolution images
Fig.3
Basic structure of the residual unit
Fig.4
Object-oriented CNN method(OCNN
FT
) flowchart
Fig.5
Fine-tuning results of CNN models on different resolution images
Fig.6
Greenhouse distribution based on RF method and OCNN
FT
method
Fig. 7
Detailed diagram of classification effect of different methods
Fig.8
PA, UA, OA and F-score of agricultural greenhouses under different resolution images
Table 3
McNemar test results based on RF method and OCNN
FT
method(significance α=0.05)