Please wait a minute...
img

官方微信

遥感技术与应用  2014, Vol. 29 Issue (5): 752-760    DOI: 10.11873/j.issn.1004-0323.0014.5.0725
模型与反演     
MWRI与AMSR-亮温数据在极地冰盖区的对比分析
陈洁,武胜利
(国家卫星气象中心,北京100081)
Comparison Analysis between MWRI and AMSR- Brightness emperature Data over the Polar Region Ice Sheet
Chen Jie,Wu Shengli
(National Satellite Meteorological Center,Beijing 100081,China)
 全文: PDF(1630 KB)  
摘要:

作为我国第一个星载微波遥感仪器,搭载在FY\|3B上的微波成像仪(MWRI)的数据质量和应用前景引起了广大科研工作者的普遍关注。为充分了解该传感器的数据质量,采用星星交叉对比的方法,以极地为研究区域,AMSR\|E亮温数据作为对比值,开展针对MWRI的亮温数据处理和评价等工作。研究结果表明:MWRI与AMSR\|E对极地区域的观测数据基本一致,整体趋势略偏小1.64 K;亮温差异随目标亮温的变化而变化,偏差值与亮温值呈正相关;不同通道比较,10 v和36 v对比结果最差,偏差绝对值和均方根误差均超过3 K;10、18和23 h通道对比结果最好,平均偏差绝对值小于0.8 K,均方根误差小于1.4 K,小于3 K的误差比例在98%以上;从线性回归分析所得斜率、截距、可决系数和均方根误差值显示,两者点对点数据值存在一定的偏差,但在数值整体趋势上具有明显的一致性,H极化比V极化对比结果更好;不同间隔的观测时次结果表明,间隔时间越长,V极化的对比差异越大。

关键词: 被动微波亮度温度交叉对比MWRIAMSR-E    
Abstract:

As the first spaceborne microwave remote sensing instrument in China,the Microwave Radiation Imager on FY\|3B has aroused widespread concern from science researchers in some fields,such as data quality and applications.In order to fully understand the performance of MWRI data,method comparison between satellites is used in this paper.The polar region ice sheet is as the study area,and AMSR\|E data is considered as the standard data.Data Processing and accessment are implemented on MWRI brightness temperature data.It is indicated that there is no significantly difference between MWRI brightness temperature data and AMSR\|E.The brightness temperature varies with target data,and there is a positive correlation between the both.Compared with different channels,the results of 10 v and 36 v are worst with more than 3 K absolute deviation and root mean square error.The result of 10,18 and 23 h are the best,with mean deviation less than 0.8 K,and root mean square error is less than 1.4 K and there is more than 98% bias is less than 3 K .The results of linear regression analysis show that there is obvious consistency in data trend.The polarization of H is better than V.The resules of different observation intervals illustrate that  the longer the time interval is,the bigger V polarization contrast differences are.

Key words: Passive microwave    Brightness temperature    Comparison    MWRI    AMSR-E
收稿日期: 2013-05-30 出版日期: 2014-11-10
:  TP 79  
基金资助:

公益性行业(气象)科研专项“青藏高原遥感积雪气候数据集建设”(GYHY201206040)项目资助。

作者简介: 陈洁(1983-),男,浙江绍兴人,工程师,主要从事陆面地标参数遥感方面的研究。Email:chenjiejie2003@163.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈洁
武胜利

引用本文:

陈洁,武胜利. MWRI与AMSR-亮温数据在极地冰盖区的对比分析[J]. 遥感技术与应用, 2014, 29(5): 752-760.

Chen Jie,Wu Shengli. Comparison Analysis between MWRI and AMSR- Brightness emperature Data over the Polar Region Ice Sheet. Remote Sensing Technology and Application, 2014, 29(5): 752-760.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.0014.5.0725        http://www.rsta.ac.cn/CN/Y2014/V29/I5/752

[1]Zhao Yingshi.Analysis Principle and Method of Remote Sensing Applications[M].Beijing:Science Press,2003.[赵英时.遥感应用分析原理与方法[M].北京:科学出版社,2003.][2]Wang Zhenzhan,Li Yun.Using AMSR-E Microwave Radiometer Data Inversion of Marine Geophysical Parameters[J].Journal of Remote Sensing,2009,13(3):335-370.[王振占,李芸.利用星载微波辐射计AMSR-E数据反演海洋地球物理参数[J].遥感学报,2009,13(3):335-370.]

[3]Che Tao,Li Xin,Gao Feng.Estimation of Snow Water Equivalent in the Tibet an Plateau Using Passive Microwave Remote Sensing Data(SSM/I)[J].Journal of Glaciology and Geocryology,2004,26(3):363-368.[车涛,李新,高峰.青藏高原积雪深度和雪水当量的被动微波遥感反演[J].冰川冻土,2004,26(3):363-368.]

[4]Gao Feng,Wang Jiemin,Sun Chengquan,et al.Advances in Study on Microwave Remote Sensing of Soil Moisture[J].Remote Sensing Technology and Application,2001,16(2):97-102.[高峰,王介民,孙成权等.微波遥感土壤湿度研究进展[J].遥感技术与应用,2001,16(2):97-102.]

[5]Liu Jing,Ma Hongzhang,Yang Le,et al.A Survey of Surface Temperature Retrieval by Passive Microwave Remote Sensing[J].Remote Sensing Technology and Application,2012,27(6):812-821.[刘晶,马红章,杨乐,等.基于被动微波的地表温度反演研究综述[J].遥感技术与应用,2012,27(6):812-821.]

[6]Jackson T J.Passive Microwave Remote Sensing for Land Application[J].Advances in Land Remote Sensing,2008:9-18.

[7]Cao Meisheng,Li Xin,Chen Xianzhang,et al.The Cryosphere Remote Sensing[M].Beijing:Science Press,2006.[曹梅盛,李新,陈贤章,等.冰冻圈遥感[M].北京:科学出版社,2006.]

[8]Jezek K C,Merry C,Cavalien D,et al.Comparison between SMMR and SSM/I Passive Microwave Data Collected over the Antarctic Ice Sheet[R].Byrd Polar Research Center Technical Report;1991-03.

[9]Derksen C,Walker A E.Identification of System Bias in the Cross-platform (SMMR and SSM/I) Ease-grid Brightness Temperature Time Series[J].IEEE Transactions on Geoscience and Remote Sensing.2003,41(4):910-915.

[10]Colton M C,Poe G A.Intersensor Calibration of DMSP SSM/I’s:F-8 to F-14,1987-1997[J].IEEE Transactions on Geoscience and Remote Sensing,1999,37(1):418-439.

[11]Cavalieri D J,Parkinson C L,Di-Girolamo N,et al.Intersensor Calibration between F13 SSMI 1 and F17 SSMIS for Global Sea Ice Data Records[J].IEEE Geoscience and Remote Sensing Society,2012,9(2):233-236.

[12]Dai Liyun,Che Tao.An Calibration of Passive Microwave Brightness Temperature between SMMR and SSM/I[J].Remote Sensing Technology and Application,2009,24(5):617-621.[戴礼云,车涛.SMMR与SSM/I被动微波亮度温度数据交叉定标[J].遥感技术与应用,2009,24(5):617-621.]

[13]Derksen C,Walker A.Combining SMMR and SSM/I Data for Time Series Analysis of Central North American Snow Water Equivalent[J].Journal of Hydrometeorology,2003,4(4):304-316.

[14]Yang Jun,Dong Chaohua.A New Generation of FY Polar OrbitMeteorological Satellite Products and Applications[M].Beijing:Science Press,2010.[杨军,董超华.新一代风云极轨气象卫星业务产品及应用[M].北京:科学出版社,2010.]

[15]Hu Peixin.FY-3B Microwave Radiation Imager Data Quality Evaluation and Parameter Inversion[D].Qingdao:Ocean University of China,2011.[扈培信.FY-3B微波成像仪数据质量评价与参数反演[D].青岛:中国海洋大学,2011.]

[16]Njoku E G,Li L.Retrieval of Land Surface Parameters Using Passive Microwave Measurements at 6~18 GHz[J].IEEE Transactions on Geoscience and Remote Sensing,1999,37(1):79-93.

[1] 林利斌,鲍艳松,左泉,房世波. 基于Sentinel-1与FY-3C数据反演植被覆盖地表土壤水分[J]. 遥感技术与应用, 2018, 33(4): 750-758.
[2] 胡文星,柴琳娜,赵少杰,赵天杰. 寒区复杂地表冻融状态判别式算法改进[J]. 遥感技术与应用, 2017, 32(3): 395-405.
[3] 王增艳,王建,车涛. 机载L波段微波辐射计数据反演表层土壤水分研究[J]. 遥感技术与应用, 2017, 32(2): 185-194.
[4] 王功雪,蒋玲梅,武胜利,刘晓敬,郝诗睿. FY-3B与FY-3C/MWRI交叉定标及雪深算法应用[J]. 遥感技术与应用, 2017, 32(1): 49-56.
[5] 胡同喜,赵天杰,施建成,谷金枝. AMSR-E与AMSR2被动微波亮温数据交叉定标[J]. 遥感技术与应用, 2016, 31(5): 919-924.
[6] 臧琳,宋冬梅,单新建,崔建勇,邵红梅,沈晨,时洪涛,宋先月. 基于被动微波与时空联合算法的云下像元LST重建[J]. 遥感技术与应用, 2016, 31(4): 764-772.
[7] 邱玉宝,郭华东,石利娟,施建成. 基于AMSR-E的全球陆表被动微波发射率数据集[J]. 遥感技术与应用, 2016, 31(4): 809-819.
[8] 杜一男,李晓峰,赵凯,武黎黎,郑兴明,姜涛. NASA系列雪参数反演算法在单像元内的时间序列验证与分析[J]. 遥感技术与应用, 2016, 31(2): 332-341.
[9] 李梦云,黄方. 基于SPOT-VGT可见光/短波红外波段数据对AMSR-E土壤湿度的降尺度研究[J]. 遥感技术与应用, 2016, 31(2): 342-348.
[10] 郑雷,张廷军,车涛,钟歆玥,王康. 利用实测资料评估被动微波遥感雪深算法[J]. 遥感技术与应用, 2015, 30(3): 413-423.
[11] 王琦,柴琳娜,赵少杰,张涛. 基于多角度微波辐射亮温数据反演冬小麦光学厚度[J]. 遥感技术与应用, 2015, 30(3): 424-430.
[12] 武黎黎,李晓峰,赵凯,郑兴明,丁艳玲,李洋洋,任建华. 被动微波雪深反演算法在东北地区的时空分析与验证[J]. 遥感技术与应用, 2015, 30(3): 565-572.
[13] 侯小刚,张璞,郑照军,李帅. 基于多源数据的阿勒泰地区雪深反演研究[J]. 遥感技术与应用, 2015, 30(1): 178-185.
[14] 王少波,严卫,艾未华,王蕊,刘天宁. 基于微波辐射计的海面溢油监测研究[J]. 遥感技术与应用, 2014, 29(1): 94-99.
[15] 杨俊涛,蒋玲梅,潘金梅,张立新. 基于GOES静止气象卫星和AMSR-E雪盖融合监测方法研究[J]. 遥感技术与应用, 2013, 28(5): 920-927.