Please wait a minute...
img

官方微信

遥感技术与应用  2002, Vol. 17 Issue (2): 74-77    DOI: 10.11873/j.issn.1004-0323.2002.2.74
研究与应用     
水污染遥感监测
汪小钦1,2,王钦敏1,刘高焕2,励惠国2
(1.福州大学地球信息科学与技术研究所,福建福州  350002;
2.中国科学院地理科学与资源研究所,北京  100101)
Water Pollution Monitoring Using Remote Sensing
WANG Xiao-qin1,2, WANG Qin-min1, LIU Gao-huan2, LI Hui-guo2
(1.Institute of Geo-Information Science and Technology,Fuzhou University,Fuzhou350002,China;
2.LREIS,Institute of Geographic and Natural Resources Research,Chinese Academy of Sciences,Beijing100101,China)
 全文: PDF 
摘要:

不同水质的水体在遥感影像上有较明显的反映。通过分析TM影像上不同水质水体的视反射率特征,发现1-4波段的视反射率(R1、R2、R3和R4)对不同的水质比较敏感。利用R2/R1>1可以区分出较高悬浮泥沙区域,R4/R3可以作为水体有机污染的指标。以黄河三角洲地区的小清河口为例,利用不同时相的TM影像,对水污染的遥感提取进行了尝试,得到了小清河口的水污染分布。

关键词: 小清河水污染视反射率遥感    
Abstract:

It seems much difference on remote sensing images with different quality water. After analyzing
the relative spectral reflectance of different quality water on TM images, we found that the relative spec-
tral reflectance of band 1 to band 4 (R1, R2, R3 and R4) were sensitive to the different quality water. R2
will be greater than R1 (R2/R1>1) for high suspended sediment regions, in which, if the suspended sedi-
ment concentration is very high, R3 is greater than R2 (R3>R2), otherwise R3 water, the more serious the polluted water is, the higher value R4/R3 is. According to the water monitor-
ing data from Environment Protect Bureau of Dongying City, the main pollutants of drainage system in
Yellow River Delta are organic substances. So R4/R3 may be used as an important index of water organic
pollution in the area. After numerous tries and comparisons, we found the average and standard deviation
of R4/R3 may be used as a semi-quality index for water pollution classification. The mouth of Xiao-qing
River was taken as an example to test the above rules and its water pollution distributions were got from
TM images in different years. The regions with high suspended sediment and serious polluted water can be
extracted from TM images using the method introduced above. And the method has some references for
water monitoring with large area.

Key words: Xiao-qing River    Water pollution    Relative spectral reflectance    Remote sensing
收稿日期: 2001-12-21 出版日期: 2011-11-21
:  TP 79  
作者简介: 汪小钦(1972-),女,讲师,现为中国科学院地理与资源研究所在读博士,主要从事遥感、GIS在资源环境中的应用研究。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

汪小钦,王钦敏,刘高焕,励惠国. 水污染遥感监测[J]. 遥感技术与应用, 2002, 17(2): 74-77.

WANG Xiao-qin, WANG Qin-min, LIU Gao-huan, LI Hui-guo. Water Pollution Monitoring Using Remote Sensing. Remote Sensing Technology and Application, 2002, 17(2): 74-77.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2002.2.74        http://www.rsta.ac.cn/CN/Y2002/V17/I2/74

〔1〕  Klemas V, Bartlett D, Ph ilpot W,et al. Coastal and Estuarine Studies with ERTS-1 and Skylab〔J〕. Remote Sensing Environment, 1974, 3: 153~177.
〔2〕 李京.水域悬浮固体含量的遥感定量研究〔J〕.环境科学学报, 1986, 6(2):166~173.
〔3〕  Stumpf R, Pennock J. Calibration of a General Optical Equation for Remote Sensing of Suspended Sediments in a Moderately Turbid Estuary〔J〕. J G R 1989, 94(C10): 14363~14371.
〔4〕  Li Yan, Huang Wei, Fang Ming. An Algorithm for the Retrieval of Suspended Sediment in Coastal Waters of China from AVHRR Data〔J〕. Continental Shelf Res, 1998,18:487~500.
〔5〕  Tassan S. An Improved In-water Algorithm for the Determination of Chlorophyll and Suspended Sediment Concentration from Thematic Mapper Data in Coastal Waters〔J〕. Int J of Remote Sensing, 1993, 14(6): 1221~1229.
〔6〕  Keiner L E, Yan X H. A Neural Network Model for Estimating Sea Surface Chlorophyll and Sediments from Thematic Mapper Imagery〔J〕. Remote Sensing of Environment,1998, 66:153~165.
〔7〕  Gower. Red Tide Monitoring Using AVHRR HRPT Imagery from a Local Receiver〔J〕. Remote Sensing of Environment,1994, 48: 309~318.
〔8〕 李栖筠,陈维英,肖乾广,等.老铁山水道漏油事故卫星监测〔J〕.环境遥感, 1994, 9(4): 256~262.
〔9〕  Trivero P, Fiscella B, Gomez F,et al. SAR Detection and Characterization of Sea Surface Slicks〔J〕. Int J Remote Sensing, 1998, 19(3): 543~548.
〔10〕 中国科学院环境科学委员会,天津市环境保护局.天津-渤海湾地区环境遥感论文集〔C〕.北京:科学出版社, 1985.
〔11〕  El Raey M, Ahmed S, Korany E. Marine Pollution Assessment near Alexandria, Egypt by Thematic Principal Components (TPC)〔J〕. Int J of Remote Sensing, 1998, 19(7):1395~1414.
〔12〕  Li Tiefang, Chen Xiaoxiang, He Zhijian, et al. Response Experiment and Study on Information Extracting Method by Seawater Pollution Band on SeaWiFS〔A〕. In: Proceedings of International Conference on Modeling Geographical and Enviromental System with Geographical Information Systems 〔C〕. Vol.Ⅰ, Hong Kong, 1998.
〔13〕 陈述彭,刘高焕,许学工,等.黄河三角洲环境评价与信息系统建设〔R〕. UNDP支持黄河三角洲可持续发展CPR/91/144项目分报告之三.山东,东营, 1997.
〔14〕  Kruse F A. Use of Airborne Imaging Spectrometer Data to Map Minerals Associated with Hydrothermally Altered Rocks in the Northern Grapevine Mountains, Nevada〔J〕.Remote Sensing of Environment, 1988, 24: 31~51.
                         

[1] 王卷乐, 程凯, 边玲玲, 韩雪华, 王明明. 面向SDGs和美丽中国评价的地球大数据集成框架与关键技术[J]. 遥感技术与应用, 2018, 33(5): 775-783.
[2] 王恺宁,王修信,黄凤荣,罗涟玲. 喀斯特城市地表温度遥感反演算法比较[J]. 遥感技术与应用, 2018, 33(5): 803-810.
[3] 张晓峰,吕晓琪,张信雪,张继凯,王月明,谷宇,樊宇. 多时刻海色遥感数据融合及其可视化[J]. 遥感技术与应用, 2018, 33(5): 873-880.
[4] 谢旭,陈芸芝. 基于PSO-RBF神经网络模型反演闽江下游水体悬浮物浓度[J]. 遥感技术与应用, 2018, 33(5): 900-907.
[5] 迟文峰,匡文慧,贾静,刘正佳. 京津风沙源治理工程区LUCC及土壤风蚀强度动态遥感监测研究[J]. 遥感技术与应用, 2018, 33(5): 965-974.
[6] 胡云锋,商令杰,张千力,王召海. 基于GEE平台的1990年以来北京市土地变化格局及驱动机制分析[J]. 遥感技术与应用, 2018, 33(4): 573-583.
[7] 李晨伟,张瑞丝,张竹桐,曾敏 . 基于多源遥感数据的构造解译与分析—以西藏察隅吉太曲流域为例[J]. 遥感技术与应用, 2018, 33(4): 657-665.
[8] 李生生,王广军,梁四海,彭红明,董高峰,罗银飞. 基于Landsat-8 OLI数据的青海湖水体边界自动提取[J]. 遥感技术与应用, 2018, 33(4): 666-675.
[9] 廖凯涛,齐述华,王成,王点. 结合GLAS和TM卫星数据的江西省森林高度和生物量制图[J]. 遥感技术与应用, 2018, 33(4): 713-720.
[10] 张震,刘时银,魏俊锋,蒋宗立. 1974~2012年珠穆朗玛峰地区冰川物质平衡遥感监测研究[J]. 遥感技术与应用, 2018, 33(4): 731-740.
[11] 王琳,徐涵秋,李胜. 重钢重工业区迁移对区域生态的影响研究[J]. 遥感技术与应用, 2018, 33(3): 387-397.
[12] 任浙豪,周坚华. 增大特征空间复杂度的方法——以城镇下垫面遥感分类为[J]. 遥感技术与应用, 2018, 33(3): 408-417.
[13] 王宝刚,晋锐,赵泽斌,亢健. 被动微波遥感在地表冻融监测中的应用研究进展[J]. 遥感技术与应用, 2018, 33(2): 193-201.
[14] 秦振涛,杨茹,张靖,杨武年. 基于聚类结构自适应稀疏表示的高光谱遥感图像修复研究[J]. 遥感技术与应用, 2018, 33(2): 212-215.
[15] 郭宇柏,卓莉,陶海燕,曹晶晶,王芳. 基于空谱初始化的非负矩阵光谱混合像元盲分解[J]. 遥感技术与应用, 2018, 33(2): 216-226.