Please wait a minute...
img

官方微信

遥感技术与应用  2003, Vol. 18 Issue (6): 360-363    DOI: 10.11873/j.issn.1004-0323.2003.6.360
研究与应用     
被动微波遥感在青藏高原积雪业务监测中的初步应用
高 峰1,2,李 新2, R L Armstrong3,王介民2,车 涛2,徐维新4
(1.中国科学院资源科学信息中心,甘肃 兰州 730000;2.中国科学院寒区旱区环境与工程研究所,甘肃 兰州 730000;3.美国国家雪冰数据中心,科罗拉多;4.青海省遥感中心,青海 西宁 810051)
Preliminary Application of Passive Microwave Data to Operational Snow Monitoring in Tibetan Plateau
GAO Feng1,2, LI Xin2, R L Armstrong3, WANG Jie-min2,CHE Tao2, XU Wei-xin4
(1.The Scientific Information Center for Resources and Environment,Chinese Academy of Sciences,Lanzhou730000,China;2.Cold and Arid Regions Environmental and Engineering  Research Institute,Chinese Academy of Sciences,Lanzhou730000,China;3.National Snow and Ice Data Center, University of Colorado at Boulder; 4.Qinghai Remote Sensing Center,Xining810051,China)
 全文: PDF 
摘要:

积雪范围、积雪深度和雪水当量等参数的遥感监测与反演对气候模式的建立以及积雪灾害的评估具有重要意义。被动微波遥感在这些参数的反演方面具有明显优势,但目前尚未应用到青藏高原地区的积雪遥感业务监测上来。2001年10月至2002年4月,利用SSM/I数据对青藏高原地区的积雪范围和积雪深度进行了实时监测,为西藏、青海遥感应用部门提供逐日的雪深分布图。对这次监测的总效果进行了分析和评价,并对发生在青海省内一次较大的降雪过程进行了遥感分析,结果表明:SSM/I反演的积雪范围变化趋势与MODIS结果总体上较为一致;SSM/I的雪深监测结果为当地遥感部门对大于10 cm的雪深做出正确判断提供了重要信息,是对雪灾定位的重要信息源。

关键词: 积雪范围积雪深度被动微波遥感SSM/I MODIS青藏高原    
Abstract:

Snow parameters, such as snow extent, snow depth and snow water equivalent are essential not only in understanding of land surface processes which is the basis of climate model but also in snow disaster assessment. Passive microwave remote sensing has advantages in retrieving these parameters,especially snow depth. However, this kind of technique has not been applied to monitoring snow in Tibetan Plateau so far. So we tried to monitor snow operationally in this area by means of SSM/I data since last winter, providing the local governmental sector with daily snow depth map. In the meantime,the in-situ snow depth data in Tibetan Plateau were collected to validate the retrieval algorithm employed in this study. In this paper, SSM/I images before and after a heavy fall of snow are analyzed and compared with MODIS images .The results show thatthe snow extent from SSM/I data is consistent with that from MODIS data, and that snow depths from SSM/I are very helpful for local snow assessment though SSM/I derived snow depth is significantly overestimated compared to in-situ data. With its retrieval algorithm being improved, passive microwave remote sensing has less effect of atmosphere and cloud and hence will be the most important tool in monitoring snow in Tibetan Plateau, especially when the new data of AMSR-E on board Aqua satellite are available.

Key words: Snow extent    Snow depth    Passive microwave remote sensing    SSM/I    MODIS    Tibetan Plateau  
收稿日期: 2003-04-21 出版日期: 2011-11-25
:  TP 79  
作者简介: 高峰(1965-),男,副研究员,主要从事微波遥感反演算法的研究。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

高 峰,李 新, R L Armstrong,王介民,车 涛,徐维新. 被动微波遥感在青藏高原积雪业务监测中的初步应用[J]. 遥感技术与应用, 2003, 18(6): 360-363.

链接本文:

http://www.rsta.ac.cn/CN/Y2003/V18/I6/360

〔1〕Lucas R M, Harrison A R. Snow observation by satellite: A review〔J〕. Remote Sensing Reviews, 1990,4(2):285~348.
〔2〕柳艳香,汤懋苍,魏丽,等.青藏高原腹地1985年雪灾成因分析〔J〕.高原气象,2000,19(1): 52~58.
〔3〕Foster J L, Hall D K, Chang A T C,et al. An Overview of Passive Microwave Snow Research and Results〔J〕. Reviews of Geophysics,1984,22:195~208.
〔4〕Stiles et al. Microwave Measurements of Snowpack Properties〔J〕. Nordic Hydrology, 1981,12,143~166.
〔5〕Chang A T C. Nimbus-7 SMMR Derived Global Snow Cover Parameters〔J〕. Annals of Glaciology, 1987,9:39~44.
〔6〕Armstrong R L, Chang A T C, Rango A,et al. Snow Depths and Grain-size Relationships with Relevance for Passive Microwave Studies〔J〕. Annals of Glaciology, 1993,17:171~176.
〔7〕Koike T, Suhama T. Passive Microwave Remote Sensing of Snow〔J〕. Annals of Glaciology, 1993,18:305~308.
〔8〕曹梅盛,李培基.中国西部积雪微波遥感监测〔J〕.山地研究,1994,12(4):230~234.
〔9〕Li Xin, Chen Xianzhang, Lu Ling,et al. Validation of SSM/I Snow Depth Algorithms in the Qinghai-Tibet Plateau Using Spatial Statistics and Ground-based Measurements〔A〕.Proceedings of the First International Workshop on GAME- Tibet〔C〕.1999,45~49.
〔10〕Jin Y Q. Radiative Transfer of Snowpack/vegetetion Canopy at the SSM/I Channels and Satellite Data Analysis〔J〕. Remote Sensing of Environment,1997,61:55~63.
〔11〕England A W. Thermal Microwave Emission from a Scattering Layer〔J〕. J Geophys Res, 1975,80(32):4484~4496.
〔12〕Chang A T C. Nimbus-7 SMMR Snow Cover Data〔R〕. Glaciological Data Report GD-18: 181~187.
〔13〕Tait A, Armstrong R. Evaluation of SMMR Satellite-derived Snow Depth Using Ground-based Measurements〔J〕. Int J Remote Sensing, 1996,17(4): 657~665.

 

[1] 金点点,宫兆宁. 基于Landsat 系列数据地表温度反演算法对比分析—以齐齐哈尔市辖区为例[J]. 遥感技术与应用, 2018, 33(5): 830-841.
[2] 冯姣姣,王维真,李净,刘雯雯. 基于BP神经网络的华东地区太阳辐射模拟及时空变化分析[J]. 遥感技术与应用, 2018, 33(5): 881-889.
[3] 汪航,师茁. 基于MODIS时间序列数据的春尺蠖虫害遥感监测方法研究—以新疆巴楚胡杨为例[J]. 遥感技术与应用, 2018, 33(4): 686-695.
[4] 周玉科,刘建文. 基于MODIS NDVI和多方法的青藏高原植被物候时空特征分析[J]. 遥感技术与应用, 2018, 33(3): 486-498.
[5] 拉巴卓玛,次珍. 2002~2015年西藏雅鲁藏布江流域积雪变化及影响因子分析研究[J]. 遥感技术与应用, 2018, 33(3): 508-519.
[6] 陈思宇,巩垠熙,梁天刚. 星载激光雷达在青藏高原湖泊变迁中的应用研究[J]. 遥感技术与应用, 2018, 33(2): 351-359.
[7] 张帅,师春香,梁晓,贾炳浩,吴捷. 风云三号积雪覆盖产品评估[J]. 遥感技术与应用, 2018, 33(1): 35-46.
[8] 孙晓,吴孟泉,何福红,张安定,赵德恒,李勃 . 2015年黄海海域浒苔时空分布及台风“灿鸿”影响研究[J]. 遥感技术与应用, 2017, 32(5): 921-930.
[9] 黎微微,胡斯勒图,陈洪滨,尚华哲. 利用MODIS资料计算不同云天条件下的地表太阳辐射[J]. 遥感技术与应用, 2017, 32(4): 643-650.
[10] 姜涛,朱文泉,詹培,唐珂,崔雪锋,张天一. 一种抗时序数据噪声的冬小麦识别方法研究[J]. 遥感技术与应用, 2017, 32(4): 698-708.
[11] 许青云,顾伟伟,谢涛,刘锐. 秸秆焚烧火点遥感监测算法实现[J]. 遥感技术与应用, 2017, 32(4): 728-733.
[12] 马敏娜,袁文平. 青藏高原总初级生产力估算的模型差异[J]. 遥感技术与应用, 2017, 32(3): 406-418.
[13] 王丽娟,郭铌,王玮,芦亚玲,沙莎. 基于TESEBS模型估算高原地区地表蒸散发[J]. 遥感技术与应用, 2017, 32(3): 507-513.
[14] 唐志光,王建,王欣,彭焕华,梁继. 近15年天山地区积雪时空变化遥感研究[J]. 遥感技术与应用, 2017, 32(3): 556-563.
[15] 葛美香,赵军,仲波,杨爱霞. FY-3/VIRR及MERSI与EOS/MODIS植被指数比较与差异原因分析[J]. 遥感技术与应用, 2017, 32(2): 262-273.