Please wait a minute...
img

官方微信

遥感技术与应用  2007, Vol. 22 Issue (1): 26-30    DOI: 10.11873/j.issn.1004-0323.2007.1.26
研究与应用     
上海城市热场与植被覆盖的关系研究
武佳卫1,徐建华1,谈文琦2
(1.华东师范大学地理系地理信息科学教育部重点实验室,上海 200062;2.上海绿化管理信息中心,上海 200040)
Study on the Relationship of Urban Heat Island and Vegetation Abundance in Shanghai City
WU Jia-wei1, XU Jian-hua1, TAN Wen-qi2
(1.Key Laboratory of Giscience Ministry of Education,Department of Geography,East China Normal
University,Shanghai200062,China; 2.Shanghai Information Center for Virescence Management,Shanghai200040,China)
 全文: PDF 
摘要:

以TM和ETM+遥感数据,反演了自20世纪80年代以来的6个特定年份的上海市地表温度,并以此来分析上海城市热岛扩展的时空演变格局,结果表明:上海城市热岛范围不断扩大,强度不断增加,分布格局逐渐由集中分布呈现片状破碎化分布;上海市建成区的扩展是导致城市热岛范围扩大、强度加大的最直接,也是最根本的原因之一。相关分析和回归分析的结果表明:植被覆盖与地表温度具有明显的负相关关系,植被分布面积的增加对城市热岛强度的降低具有非常积极的
作用。

关键词: 城市热岛地表温度植被覆盖Landsat上海市    
Abstract:

Land surface temperature in six specific time since 1980 s were retrieved from TM and ETM+remotely sensed data. The temporal-spatial evolvement patterns were analyzed and the results showed that the range of urban heat island in Shanghai city enlarged, and so did intensity. The concentrated distributions of UHI gradually turned to dispersed situation. The sprawl of built-up area is the main cause of enlargement of UHI' s range and intensity. Correlation and regression analysis suggest that there is obvious negative correlationship between vegetation abundance and land surface temperature. It is very important to decrease UHI by increasing vegetation abundance in urban environmental management.

Key words: Urban heat island    Land surface temperature    Vegetation abundance    Landsat    Shanghai
收稿日期: 2006-05-22 出版日期: 2011-10-14
:  TP 79  
基金资助:

由国家自然科学基金项目(40371092)资助。

作者简介: 武佳卫(1981-),男,硕士研究生,专业方向为GIS与城市遥感。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

武佳卫,徐建华,谈文琦. 上海城市热场与植被覆盖的关系研究[J]. 遥感技术与应用, 2007, 22(1): 26-30.

WU Jia-wei, XU Jian-hua,TAN Wen-qi. Study on the Relationship of Urban Heat Island and Vegetation Abundance in Shanghai City. Remote Sensing Technology and Application, 2007, 22(1): 26-30.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2007.1.26        http://www.rsta.ac.cn/CN/Y2007/V22/I1/26


[1] 张仁华.对于定量热红外遥感的一些思考
[J].国土资源遥感,1999,1:1-6.

[2] 周坚华,孙天纵.城市遥感
[M].上海:上海科技出版社,1995.

[3] Weng Q. Fractal Analysis of Satellite-detected Urban Heat Island Effect
[J]. Photogrammetric Engineering & Remote Sensing, 2003,69:555-565.

[4] Snyder W C, Wan Z, Zhang Y,et al. Classification Based Emissivity for Land Surface Temperature Measurement from Space
[J]. International Journal of Remote Sensing, 1998,19:2753-2774.

[5] Weng Q, Lu D, Schubring J. Estimation of Land Surface Temperature-vegetation Abundance Relationship for Urban Heat Island Studies
[J]. Remote Sensing of Environment,1998,89:467-483.

[6] Lo C P, Quattrochi D A, Luvall J C. Application of High-resolution Thermal Infrared Remote Sensing and GIS to Assess the Urban Heat Island Effect
[J]. International Journal of Remote Sensing, 1997,18:287-303.

[7] Hung T, Uchihama D, Ochi S,et al. Assessment with Satellite Data of the Urban Heat Island Effects in Asian Mega Cities
[J]. International Journal of Applied Earth Observation and Geoinformation,1997,8:34-48.

[8] 周廷刚,郭达志.基于GIS的城市绿地景观空间结构研究—以宁波市为例
[J].生态学报,2004,24(6):1158-1163.

[9] 何兴元,陈玮,徐文铎,等.沈阳城区绿地生态系统景观结构与异质性分析
[J].应用生态学报,2003,14(12):2085-2089.

[10] Small C. Estimation of Urban Vegetation Abundance by Spectral Mixture Analysis
[J]. International Journal of Remote Sensing, 2001,22(7):1305-1334.

[11] Landsat Project Science Office, 2002. Landsat 7 Science Data User' s Handbook. Goddard Space Flight Center
[S/OL]. www address: http://ltpwww. gsfc. nasa. gov/IAS/handbook/handbook-toc.html.

[12] Artis D A, Carnahan W H. Survey of Emissivity Variability in Thermography of Urban Areas
[ J ]. Remote Sensing of Environment, 1982,12:313-329.

[13] Weng Q. A Remote Sensing-GIS Evaluation of Urban Expansion and Its Impact on Surface Temperature in the Zhujiang Delta, China
[J]. International Journal of Remote Sensing,2001,22:1999-2014.

[14] 梅安新,吴健平,周坚华,等.上海城市扩展和城市化过程及规律的遥感动态研究
[R].上海市航空遥感综合调查研究报告,1997.

[15] 岳文泽.基于遥感影像的城市景观格局及其热环境效应研究
[D].华东师范大学博士论文,2005.

[1] 汪子豪,秦其明,孙元亨. 基于BP神经网络的地表温度空间降尺度方法[J]. 遥感技术与应用, 2018, 33(5): 793-802.
[2] 王恺宁,王修信,黄凤荣,罗涟玲. 喀斯特城市地表温度遥感反演算法比较[J]. 遥感技术与应用, 2018, 33(5): 803-810.
[3] 石满,陈健,覃帮勇,李盛阳. 天宫二号数据地表温度反演及其在城市群热环境监测中的应用[J]. 遥感技术与应用, 2018, 33(5): 811-819.
[4] 李军,龚围,辛晓洲,高阳华. 重庆地表温度的遥感反演及其空间分异特征[J]. 遥感技术与应用, 2018, 33(5): 820-829.
[5] 金点点,宫兆宁. 基于Landsat 系列数据地表温度反演算法对比分析—以齐齐哈尔市辖区为例[J]. 遥感技术与应用, 2018, 33(5): 830-841.
[6] 韩涛,潘剑君,张培育,曹罗丹. Sentinel-2A与Landsat-8影像在油菜识别中的差异性研究[J]. 遥感技术与应用, 2018, 33(5): 890-899.
[7] 张滔,唐宏. 基于Google Earth Engine的京津冀2001~2015年植被覆盖变化与城镇扩张研究[J]. 遥感技术与应用, 2018, 33(4): 593-599.
[8] 施佩荣,陈永富,刘华,吴云华. 基于分割评价函数的多尺度分割参数的选择[J]. 遥感技术与应用, 2018, 33(4): 628-637.
[9] 李晨伟,张瑞丝,张竹桐,曾敏 . 基于多源遥感数据的构造解译与分析—以西藏察隅吉太曲流域为例[J]. 遥感技术与应用, 2018, 33(4): 657-665.
[10] 王恒,杨昊翔,张丽. 海上丝绸之路沿线区域植被覆盖变化特征[J]. 遥感技术与应用, 2018, 33(4): 703-712.
[11] 王琳,徐涵秋,李胜. 重钢重工业区迁移对区域生态的影响研究[J]. 遥感技术与应用, 2018, 33(3): 387-397.
[12] 卢惠敏,李飞,张美亮,杨刚,孙伟伟. 景观格局对杭州城市热环境年内变化的影响分析[J]. 遥感技术与应用, 2018, 33(3): 398-407.
[13] 钟函笑,边金虎,李爱农. Landsat-8 OLI与Sentinel-2 MSI山区遥感影像辐射一致性研究[J]. 遥感技术与应用, 2018, 33(3): 428-438.
[14] 史新,周买春. 基于Landsat 8数据的3种地表温度反演算法在三河坝流域的对比分析[J]. 遥感技术与应用, 2018, 33(3): 465-475.
[15] 段金亮,王杰,张婷. 一种基于光谱归一化下的植被覆盖度反演算法[J]. 遥感技术与应用, 2018, 33(2): 252-258.