Please wait a minute...
img

官方微信

遥感技术与应用  2007, Vol. 22 Issue (1): 39-44    DOI: 10.11873/j.issn.1004-0323.2007.1.39
研究与应用     
中国西部地区积雪深度的空间插值比较
唐国栋,柯长青
(南京大学城市与资源学系,江苏 南京 210093)
Comparison of Spatial Interpolation Methods of Snow Depth in the West of China
TANG Guo-dong, KE Chang-qing
(Department of Urban and Resources Sciences,Nanjing University,Nanjing210093,China)
 全文: PDF 
摘要:

应用反距离加权法、样条函数法、Kriging法对中国西部地区(79.05°~103.57°E,27.17°~48.05°N)113个气象台站观测的年平均积雪深度进行空间插值比较研究。结果表明反距离加权法和样条函数法的插值结果与积雪深度的实际分布情况有一定的差异;普通Kriging法能够反映出研究区积雪深度分布的空间结构特征,与实际情况比较吻合。影响插值结果精度的主要原因是研究区内气象台站稀少且空间分布很不均匀。可以通过合理的采样设计,将确定性方法和随机方法相结合,并考虑地形、气候等影响积雪分布的因素来提高空间插值的精度。

关键词: Kriging法反距离加权法样条函数法积雪深度中国西部地区    
Abstract:

The spatial interpolation methods of Inverse Distance Weighted (IDW), Spline and Kriging are utilized for comparison study on spatial interpolation of annual average snow depth from 113 observatories in the west of China (79.05°~103.57°E,27.17°~48.05°N). The principles of these three methods are different from each other. IDW determines cell values using a linear-weighted combination set of sample points. Spline estimates values using a mathematical function that minimizes overall surface curvature. And ordinary Kriging is a powerful statistical interpolation method which assumes that the distance or direction between sample points reflects a spatial correlation that can be used to explain variation in the surface. Compared with the unsatisfactory interpolation results of IDW and Spline, the result of ordinary Kriging is more close to the real snow depth distribution and can represents the spatial structure of snow depth distribution better. The main reasons which affect the precision are the small number of observatories and their asymmetric spatial distribution. However, the accuracy of spatial interpolation can be improved through reasonable design of sampling, combining deterministic and stochastic methods, and considering the influencing factors of snow distribution such as the terrain and climate.

Key words: Kriging    IDW    Spline    Snow depth    The west of China
收稿日期: 2006-05-10 出版日期: 2011-10-14
:  P 208   
基金资助:

国家自然科学基金(40301013)项目资助。

作者简介: 唐国栋(1981-),男,硕士生,主要研究方向为地理信息系统的研究和开发。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

唐国栋,柯长青. 中国西部地区积雪深度的空间插值比较[J]. 遥感技术与应用, 2007, 22(1): 39-44.

TANG Guo-dong, KE Chang-qing. Comparison of Spatial Interpolation Methods of Snow Depth in the West of China. Remote Sensing Technology and Application, 2007, 22(1): 39-44.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2007.1.39        http://www.rsta.ac.cn/CN/Y2007/V22/I1/39


[1] Wu T W, Qian Z A, The Relation Between the Tibetan Winter Snow and the Asian Summer Monsoon and Rainfall: An Observational Investigation
[J]. Journal of Climate 16, 2003,2038-2051.

[2] 陈烈庭.青藏高原异常雪盖和ENSO在1998年长江流域洪涝中的作用
[J].大气科学,2001,25(2):184-192.

[3] 曹梅盛,李培基.中国西部积雪微波遥感监测
[J].山地研究,1994,12(4):230-234.

[4] 车涛,李新,高峰.青藏高原积雪深度和雪水当量的被动微波遥感反演
[J].冰川冻土,2004,26(3):363-368.

[5] 冯锦明,赵天保,张英娟.基于台站降水资料对不同空间内插方法的比较
[J].气候与环境研究,2004,9(2):261-277.

[6] 李新,程国栋,卢玲.青藏高原气温分布的空间插值方法比较
[J].高原气候,2003,22(6):565-573.

[7] 冯学智,柏延臣,史正涛,等.北疆地区积雪深度的克里格内插估计
[J].冰川冻土,2000,12:358-361.

[8] 柯长青,李培基.青藏高原积雪分布与变化特征
[J].地理学报,1998,53(3):209-215.

[9] 韦志刚,黄荣辉,陈文,等.青藏高原地面站积雪的空间分布和年代际变化特征
[J].大气科学,2002,26(4):496-508.

[10] Collins F C. A Comparison of Spatial Interpolation Techniques in Temperature Estimation
[S/OL].http://www.ncgia.ucsb. edu/conf/SANTA-FE-CD-ROM/sf-papers/collinsfred/collins.html, 1999.

[11] 李新,程国栋,卢玲.空间内插方法的比较
[J].地球科学进展,2000,15(3):260-265.

[12] 侯景儒,尹镇南,李维明,等.实用地质统计学
[M].北京:地质出版社,1998.

[1] 侯小刚,张璞,郑照军,李帅. 基于多源数据的阿勒泰地区雪深反演研究[J]. 遥感技术与应用, 2015, 30(1): 178-185.
[2] 车 涛,李 新. 利用被动微波遥感数据反演我国积雪深度及其精度评[J]. 遥感技术与应用, 2004, 19(5): 301-306.
[3] 高 峰,李 新, R L Armstrong,王介民,车 涛,徐维新. 被动微波遥感在青藏高原积雪业务监测中的初步应用[J]. 遥感技术与应用, 2003, 18(6): 360-363.