Please wait a minute...
img

官方微信

遥感技术与应用  2007, Vol. 22 Issue (2): 264-267    DOI: 10.11873/j.issn.1004-0323.2007.2.264
研究与应用     
风云三号微波成像仪积雪参数反演算法初步研究
孙知文1,施建成1,2,杨 虎3,蒋玲梅1,彭 亮1
(1.北京师范大学遥感科学国家重点实验室,北京 100875;2.中国科学院遥感应用研究所遥感科学国家重点实验室,北京 100101;3.国家卫星气象中心,北京 100081)
A Study on Snow Depth Estimating and Snow Water Equivalent Algorithm for FY-3 MWRI
SUN Zhi-wen1, SHI Jian-cheng1,2, YANG Hu3,JIANG Ling-mei1, PENG Liang1
(1.State Key Laboratory of Remote Sensing Science,Beijing Normal University,Beijing100875China;
2.Institute of Remote Sensing Application,Chinese Academy of Sciences,Beijing100101,China;
3.National Satellite Meteorological Center,Beijing100101,China)
 全文: PDF 
摘要:

选择新疆地区作为实验区,为风云三号(FY-3)微波成像仪(MWRI)发展中国区域的积雪参数半经验反演算法。使用2003年4个月的新疆地区的台站观测资料和AMSR-E 18.7 GHz,36.5GHz和89 GHz水平和垂直极化亮温作为FY-3 MWRI的模拟数据,在Chang建立的半经验模型的基础上,采用多元线性回归分析,建立一个新算法。用已有方法去除水体、降雨、湿雪、冻土的像元后,用新算法反演了新疆地区的2004年1月的积雪参数,并分别与AMSR-E雪水当量产品和台站观测值进行比较,结果表明新算法在新疆地区优于AMSR-E的反演算法。

关键词: 雪深雪水当量被动微波遥感风云3号微波成像仪(FY-3 MWRI)AMSR-E新疆    
Abstract:

FY-3 is the second generation polar orbit meteorological satellite serial of China. There is a radiometer-Microwave Radiometer Imager (MWRI) board on first satellite of FY-3 which will be launched in 2007 in first time. Xinjiang province as a test site was selected to develop the snow parameters algorithm for FY-3 MWRI in china area. Base on Chang' s semi-empirical model, AMSR-E brightness temperatures at 18.7 GHz,37 GHz and 89 GHz, four-month snow depth and SWE which are observed by meteorology station at Xinjiang in 2003 were used to establish regional algorithm. A monthly records of daily snow depth and SWE in JAN 2004 and AMSR-E SWE products were used to test the new algorithm. The surface water body, wet snow, precipitation and other anomalous scattering signals are screened using established methods. While compare estimated SWE by using new algorithm and SWE from AMSR-E with meteorological stations records respectively, the RMSE are 17.9 mm and 26.4 mm. The result show the new algorithm is better performance than algorithm for AMSR-E over Xinjiang province.

Key words: Snow depth    Snow water equivalent(SWE)    Passive microwave remote sensing    FY-3 MWRI    AMSR-E    Xinjiang
收稿日期: 2006-12-16 出版日期: 2011-11-25
:  TP 722.6  
基金资助:

国家自然科学基金项目(90302008)和国家气象局风云三号研发项目(FY3-PGS-0601(7-2))资助。

作者简介: 孙知文(1983-),男,硕士研究生,主要从事被动微波遥感反演积雪参数的研究。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

孙知文,施建成,杨 虎,蒋玲梅,彭 亮. 风云三号微波成像仪积雪参数反演算法初步研究[J]. 遥感技术与应用, 2007, 22(2): 264-267.

SUN Zhi-wen, SHI Jian-cheng, YANG Hu,JIANG Ling-mei, PENG Liang. A Study on Snow Depth Estimating and Snow Water Equivalent Algorithm for FY-3 MWRI. Remote Sensing Technology and Application, 2007, 22(2): 264-267.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2007.2.264        http://www.rsta.ac.cn/CN/Y2007/V22/I2/264

[1]  杨虎,施建成.FY-3微波成像仪地表参数反演研究[J].遥感技术与应用,2005,20(1):194-200.
[2]  Goodison B E, Walker A E. Use of Snow Cover Derived from Satellite Passive Microwave Data as An Indicator of Climate Change[J]. Annals of Glaciology, 1993,17: 137-142.
[3] Chang A T C, Foster J L, Hall D K. NIMBUS-7 SMMR Derived Snow Cover Parameters[J]. Annals of Glaciology,1987(a),9:39-44.
[4] Goodison B E, Walker A E. Use of Snow Cover Derived from Satellite Passive Microwave Data as An Indicator of Climate Change[J]. Annals of Glaciology, 1993,17:137-142.
[5]  Kelly R J, Chang A T, Tsang L,et al. A Prototype AMSRE Global Snow Area and Snow Depth Algorithm[J]. IEEE Transaction on Geoscience and Remote Sensing, 2003, 41(2):1-13.
[6]  崔彩霞,杨青,王胜利.1960~2003年新疆山区与平原积雪长期变化的对比分析[J].冰川冻土,2005,27(4):486-490.
[7]  Ashcroft P, Wentz F. Updated Daily. AMSR-E/Aqua L2A Global Swath Spatially-Resampled Brightness Temperatures(Tb) V00[DB/OL].September to October 2003. Boulder,CO, USA: National Snow and Ice Data Center. Digital media.
[8]  F T乌拉比,R K穆尔,冯建超.微波遥感第一卷微波遥感基础和辐射测量学[M].北京:科学出版社,1986.
[9]  Thomas H P, Jeff Dozier, Dar A R,et al. Retrieval of Subpixel Snow-covered Area and Grain Size from Imaging Spectrometer Data[J]. Remote Sensing of Environment, 2003,85:64-77.
[10]  Shuman C A, Alley R B. Spatial and Temporal Characterization of Hoar Formation in Central Greenland Using SSM/I Brightness Temperatures
[J]. Geophysical Research Letters,1993, 20(23):2643-2646.
[11]  Norman C, Grody, Alan N. Basist. Global Identification of Snowcover Using SSM/I Measurements [ J ]. IEEE Transaction on Geoscience and Remote Sensing, Jan. 1996,34(1):237-249.

[1] 高莎,林峻,马涛,吴建国,郑江华. 新疆巴音布鲁克草原马先蒿光谱特征提取与分析[J]. 遥感技术与应用, 2018, 33(5): 908-914.
[2] 侯海艳,侯金,黄春林,王昀琛. 基于人工神经网络和AMSR2多频微波亮温的北疆地区雪深反演[J]. 遥感技术与应用, 2018, 33(2): 241-251.
[3] 王功雪,蒋玲梅,武胜利,刘晓敬,郝诗睿. FY-3B与FY-3C/MWRI交叉定标及雪深算法应用[J]. 遥感技术与应用, 2017, 32(1): 49-56.
[4] 马媛,李弘毅,张璞,刘大锋,黄晓东,郝晓华,邵东航,王建. 利用伽马射线探测雪水当量方法的改进[J]. 遥感技术与应用, 2017, 32(1): 57-63.
[5] 胡同喜,赵天杰,施建成,谷金枝. AMSR-E与AMSR2被动微波亮温数据交叉定标[J]. 遥感技术与应用, 2016, 31(5): 919-924.
[6] 邱玉宝,郭华东,石利娟,施建成. 基于AMSR-E的全球陆表被动微波发射率数据集[J]. 遥感技术与应用, 2016, 31(4): 809-819.
[7] 杜一男,李晓峰,赵凯,武黎黎,郑兴明,姜涛. NASA系列雪参数反演算法在单像元内的时间序列验证与分析[J]. 遥感技术与应用, 2016, 31(2): 332-341.
[8] 李梦云,黄方. 基于SPOT-VGT可见光/短波红外波段数据对AMSR-E土壤湿度的降尺度研究[J]. 遥感技术与应用, 2016, 31(2): 342-348.
[9] 孙建勇,车 涛,段克勤,戴礼云. 冰沟流域积雪面积比例与雪水当量关系初探[J]. 遥感技术与应用, 2015, 30(6): 1085-1094.
[10] 郑雷,张廷军,车涛,钟歆玥,王康. 利用实测资料评估被动微波遥感雪深算法[J]. 遥感技术与应用, 2015, 30(3): 413-423.
[11] 王琦,柴琳娜,赵少杰,张涛. 基于多角度微波辐射亮温数据反演冬小麦光学厚度[J]. 遥感技术与应用, 2015, 30(3): 424-430.
[12] 武黎黎,李晓峰,赵凯,郑兴明,丁艳玲,李洋洋,任建华. 被动微波雪深反演算法在东北地区的时空分析与验证[J]. 遥感技术与应用, 2015, 30(3): 565-572.
[13] 侯小刚,张璞,郑照军,李帅. 基于多源数据的阿勒泰地区雪深反演研究[J]. 遥感技术与应用, 2015, 30(1): 178-185.
[14] 王宏伟,黄春林,侯金亮. 一种融合遥感和地面观测资料的雪深空间插值方法[J]. 遥感技术与应用, 2014, 29(6): 993-1000.
[15] 陈洁,武胜利. MWRI与AMSR-亮温数据在极地冰盖区的对比分析[J]. 遥感技术与应用, 2014, 29(5): 752-760.