Please wait a minute...
img

官方微信

遥感技术与应用  2007, Vol. 22 Issue (3): 382-388    DOI: 10.11873/j.issn.1004-0323.2007.3.382
研究与应用     
我国遥感植被生长季节的地面检验研究—以温带草原和暖温带落叶阔叶林区为例
丁 登,陈效逑
(北京大学环境学院,北京 100871)
A Study on Surface Validation of the Satellite-derived Vegetation Growing Season in China—A Case of the Temperate Steppe Area and the Warm Temperate Deciduous Broad-leaved Forest Area
DING Deng, CHEN Xiao-qiu
(College of Environmental Sciences,Peking University,Beijing100871,China)
 全文: PDF 
摘要:

利用1982~2000年NOAA AVHRR NDVI时间序列数据,分别采用中值法、经验公式法、延迟滑动平均法和原型曲线法,划分我国温带草原区7个牧业试验站和暖温带落叶阔叶林区5个物候站所在像元的植被生长季节。通过比较各种方法划分结果与物候观测结果的标准差,以及遥感生长季节划分结果的绝对误差分级百分比、相关误差指标和相关系数,对比分析了各种方法生长季节划分结果的稳定性、准确性和有效性。研究结果表明,划分生长季节的开始,在草原区和森林区均以原型曲线法最为适宜。划分生长季节的结束,在草原区以中值法的划分结果最好,其次是原型曲线法衰落点的划分结果;而在森林区,则以原型曲线法休眠点的划分结果最好。本文为遥感生长季节划分结果的地面检验与划分方法的筛选,提供了典型的案例和方法。

关键词: NDVI遥感生长季节地面检验方法比较    
Abstract:

Satellite-derived beginning and end dates of growing season at 7 sites of the temperate steppe area and 5 sites of the warm temperate deciduous broad-leaved forest area in China were determined with the measures of seasonal midpoint NDVI (SMN), inflection point by Moulin (MOULIN) and by Zhang(LOGISTIC), and moving average (MA) using NOAA/AVHRR NDVI time series data from 1982 to2000. The four measures were matched to surface observations and then their stabilities, accuracies, and validities were studied via compare of absolute error distributions, standard deviations, mean absolute errors, and correlation coefficients and so on. The results show that LOGISTIC is the most appropriate of the four measures in determining beginning date of growing season in both the steppe area and the forest area. As to satellite-derived end date of growing season in the steppe area, SMN performs best, followed by LOGISTIC with the senescence point defined as end date. In the forest area, of the four satellite-derived end date of growing season measures, LOGISTIC with the dormancy point defined as end date, is the most preponderant one. This paper provided a typical case and method to surface validation of the satellite-derived vegetation growing season and selection of various measures.

Key words: NDVI    Satellite-derived growing season    Surface validation    Measures compare
收稿日期: 2007-01-31 出版日期: 2011-11-25
:  TP 79∶X 835  
基金资助:

国家自然科学基金项目(40671028,40371042)[Foundation: Project of National Natural Science Foundation of China, No.40671028, 40371042]。

作者简介: 丁登(1982-),女,硕士研究生,主要从事植被物候学和气候变化响应研究。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

丁 登,陈效逑. 我国遥感植被生长季节的地面检验研究—以温带草原和暖温带落叶阔叶林区为例[J]. 遥感技术与应用, 2007, 22(3): 382-388.

DING Deng, CHEN Xiao-qiu. A Study on Surface Validation of the Satellite-derived Vegetation Growing Season in China—A Case of the Temperate Steppe Area and the Warm Temperate Deciduous Broad-leaved Forest Area. Remote Sensing Technology and Application, 2007, 22(3): 382-388.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2007.3.382        http://www.rsta.ac.cn/CN/Y2007/V22/I3/382

[1] Chmielewski F M, Ro。tzer T. Response of Tree Phenology to Climate Change Across Europe[J]. Agricultural and Forest Meteorology, 2001, 108:101-112.
[2] Chmielewski F M, Ro。tzer T. Annual and Spatial Variability of the Beginning of Growing Season in Europe in Relation to Air Temperature Changes[J]. Climate Research, 2002, 19:257-264.
[3] Keeling CD, Chin JFS, Whorf TP. Increased Activity of Northern Vegetation Inferred from Atmosphere CO2Measurements[J]. Nature, 1996, 382:146-149.
[4] Randerson J, Field C, Fung I,et al. Increases in Early Season Ecosystem Uptake Explain Recent Changes in the Seasonal Cycle of Atmosphere CO2at High Northern Latitudes[J]. Geophysical Research Letters, 1999, 26:2765-2768.
[5] White MA, Nemani RR. Canopy Duration Has Little Influence on Annual Carbon Storage in the Deciduous Broad Leaf Forest[J]. Global Change Biology,2003,9:967-972.
[6] 陈效逑,曹志萍.植物物候期的频率分布型及其在季节划分中的应用[J].地理科学,1999,19(1):21-27.
[7] Reed BC, Brown JF, Vander ZD,et al. Measuring Phenological Variability from Satellite Imagery[J]. Journal of Vegetation Science, 1994, 5:703-714.
[8] Moulin S, Kergoat L, Viovy N,et al. Global-scale Assessment of Vegetation Phenology Using NOAA/AVHRR Satellite Measurements[J]. Journal of Climate, 1997, 10:1154-1170.
[9] White M A, Thorton P E, Running S W.A Continental Phenology Model for Monitoring Vegetation Responses to Interannual Climatic Variability
[J]. Global Biogeochemical Cycles, 1997, 11(2):217-234.
[10] Zhou L, Tucker C J, Kaufmann R K,et al. Variations in Northern Vegetation Activity Inferred from Satellite Data of Vegetation Index During 1981 to 1999 [ J ]. Journal of Geophysical Research-Atmosphere, 2001, 106(17):20069-20083.
[11] Zhang X, Friedl M A, Schaaf C B,et al. Monitoring Vegetation Phenology Using MODIS[J].Remote Sensing of Environment, 2003, 84:471-475.
[12] Chen X, Tan Z, Schwartz M D,et al. Determining the Growing Season of Land Vegetation on the Basis of Plant Phenology and Satellite Data in Northern China [ J ].International Journal of Biometeorology, 2000, 44: 97-101.
[13] Chen X, Pan W. Relationships among Phenological Growing Season Time-integrated Normalized Difference Vegetation Index and Climate Forcing in the Temperate Region of Eastern China [J]. International Journal of Climatology,2002,22:1781-1792.
[14] Zhang X, Friedl M A, Schaaf C B,et al. Climate Controls on Vegetation Phenological Patterns in Northern Mid-and High Latitudes Inferred from MODIS Data [J]. Global Change Biology, 2004, 10:1133-1145.
[15] Delbart N, Kergoat L, Toan T L,et al. Determination of Phenological Dates in Boreal Regions Using Normalized Difference Water Index[J]. Remote Sensing of Environment,2005, 97:26-38.
[16] Reed B C, White M A, Brown J F. Remote Sensing Phenology[A]. Schwartz MD. Phenology: An Integrative Environmental Science[C]. Boston: Kluwer Academic Publishers,2003.
[17] Lloyd D. A Phenological Classification of Terrestrial Vegetation Cover Using Shortwave Vegetation Index Imagery[J].International Journal of Remote Sensing, 1990, 11: 2269-2279.
[18] 陈效逑,喻蓉.1982~1999年我国东部暖温带植被生长季节的时空变化[J].地理学报,2007,62(1):41-51.

[1] 张滔,唐宏. 基于Google Earth Engine的京津冀2001~2015年植被覆盖变化与城镇扩张研究[J]. 遥感技术与应用, 2018, 33(4): 593-599.
[2] 汪航,师茁. 基于MODIS时间序列数据的春尺蠖虫害遥感监测方法研究—以新疆巴楚胡杨为例[J]. 遥感技术与应用, 2018, 33(4): 686-695.
[3] 苗茜,王昭生,王荣,黄玫,孙佳丽. 基于NDVI数据评估O3污染对华北地区夏季植被生长的影响[J]. 遥感技术与应用, 2018, 33(4): 696-702.
[4] 周玉科,刘建文. 基于MODIS NDVI和多方法的青藏高原植被物候时空特征分析[J]. 遥感技术与应用, 2018, 33(3): 486-498.
[5] 王佳鹏,施润和,张超,刘浦东,曾毓燕. 基于光谱分析的长江口湿地互花米草叶片叶绿素含量反演研究[J]. 遥感技术与应用, 2017, 32(6): 1056-1063.
[6] 杨涛,黄法融,李倩,白磊,李兰海. 新疆北部植被生长季NDVI时空变化及其与冬季降雪的关系[J]. 遥感技术与应用, 2017, 32(6): 1132-1140.
[7] 孙晓,吴孟泉,何福红,张安定,赵德恒,李勃 . 2015年黄海海域浒苔时空分布及台风“灿鸿”影响研究[J]. 遥感技术与应用, 2017, 32(5): 921-930.
[8] 周金霖,马明国,肖青,闻建光. 西南地区植被覆盖动态及其与气候因子的关系[J]. 遥感技术与应用, 2017, 32(5): 966-972.
[9] 方雨晨,王培燕,田庆久. 不同覆盖度下小麦农田土壤对NDVI影响模拟分析[J]. 遥感技术与应用, 2017, 32(4): 660-666.
[10] 姜涛,朱文泉,詹培,唐珂,崔雪锋,张天一. 一种抗时序数据噪声的冬小麦识别方法研究[J]. 遥感技术与应用, 2017, 32(4): 698-708.
[11] 葛美香,赵军,仲波,杨爱霞. FY-3/VIRR及MERSI与EOS/MODIS植被指数比较与差异原因分析[J]. 遥感技术与应用, 2017, 32(2): 262-273.
[12] 李洛晞,沈润平,李鑫慧,郭佳. 基于MODIS时间序列森林扰动监测指数比较研究[J]. 遥感技术与应用, 2016, 31(6): 1083-1090.
[13] 冯莉,李柳华,郭松,卢荻. HJ-1A NDVI与MODIS NDVI时间序列提取植被物候特征对比研究[J]. 遥感技术与应用, 2016, 31(6): 1158-1166.
[14] 吴志杰,何国金,王猛猛,傅娇凤,邹丹. 南方丘陵区植被覆盖度遥感估算与时空变化研究—以福建省永定县为例[J]. 遥感技术与应用, 2016, 31(6): 1201-1208.
[15] 张韵婕,桂朝,刘庆生,刘高焕. 基于遥感和气象数据的蒙古高原1982~2013年植被动态变化分析[J]. 遥感技术与应用, 2016, 31(5): 1022-1030.