Please wait a minute...
img

官方微信

遥感技术与应用  2007, Vol. 22 Issue (4): 513-519    DOI: 10.11873/j.issn.1004-0323.2007.4.513
研究与应用     
一种改进的高光谱数据自适应波段选择方法
杨金红1,2,尹 球3,周 宁3
(1.中国气象科学研究院,北京 100081;2.南京信息工程大学,江苏 南京 210044;3.中国科学院上海技术物理研究所,上海 200083)
An Improved Method of Hyperspectral Remote Sensing Data Adaptive Band Selection
YANG Jin-hong1,2, YIN Qiu3, ZHOU Ning3
(1.Chinese Academy of Meteorological Sciences,Beijing100081,China;
2.Nanjing University of Information Sciences and Technology,Nanjing210044,China;
3.Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai200083,China)
 全文: PDF 
摘要:

高光谱遥感数据具有的波段数目多、波段宽度窄、数据量庞大等特点给图像的进一步解译带来了困难。为了解决这一问题,对自适应波段选择的降维方法进行了改进,不仅考虑了高光谱遥感图像波段的信息量和波段间的相关性,更重要的是考虑了各地物连续光谱间的可分性。光谱间的可分性距离越大,表明类间的可分性越大,地物越清晰。首先选出了能有效区分图像上任意两类别的理想波段子集,再根据波段子集中任意3波段的相关系数之和最小和它们的均方差最小两个指标,选出任意两类对间那些包含信息量大、相关性又小、谱间差异又大的3波段组合(且不唯一),最后对整幅影像选出的最佳3波段45、75、85合成的假彩色图像用光谱角度制图法(SAM)进行了分类,总体分类精度达到91.7%,Kappa系数达到0.82。

关键词: 高光谱遥感数据自适应波段选择光谱可分性光谱角度制图法    
Abstract:

In comparison with multispectral remote sensing,the characteristics of hyperspectral remote sensing data with more channels, narrower bandwidth and larger amount of data have caused many problems to further management. In order to solve these problems, this paper introduced an improved
adaptive band selection method of dimensional reduction, which can' t only obtain the bands with the high information content and the low correlativity, but also the bands with the longer divisibility distance between the continous spectrals of all ground objects. It shows that the divisibility distance between the spectrals of the arbitrary two ground objects is more long, these two kinds of ground objects appear more clearly. At first, the ideal band subsets are choiced, from which the optimal three bands combination(not unique) with high information content, smaller correlation coefficient and longer divisibility distance are further choosed based on the lowest correlation coefficient sum and the lowest mean square deviation. In order to testify the effect of the improved adaptive band selection method, the spectral angle mapping classification method is implemented on the false color synthesis image of the channels 45、75 and 85.The results of the classification show that the total classification accuracy percentage of the choiced bands image is 91.7%, Kappa coefficient 0.82.

Key words: Hyperspectral remote sensing data    Adaptive band selection    Spectral divisibility    Spectral angle mapping method
收稿日期: 2006-11-21 出版日期: 2011-11-25
:  TP 751.1  
基金资助:

国家自然科学基金资助项目(40271084);863计划项目(2006AA12Z148)。

作者简介: 杨金红(1974-),女,博士研究生,主要从事高光谱遥感数据处理。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

杨金红,尹 球,周 宁. 一种改进的高光谱数据自适应波段选择方法[J]. 遥感技术与应用, 2007, 22(4): 513-519.

YANG Jin-hong, YIN Qiu, ZHOU Ning. An Improved Method of Hyperspectral Remote Sensing Data Adaptive Band Selection. Remote Sensing Technology and Application, 2007, 22(4): 513-519.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2007.4.513        http://www.rsta.ac.cn/CN/Y2007/V22/I4/513

[1] 浦瑞良,宫鹏.高光谱遥感及其应用[M].北京:高等教育出版社,2000.
[2] 刘建平,赵英时,孙淑玲,等.高光谱遥感数据最佳波段选择方法试验研究[J].遥感技术与应用,2001,16(1):7-13.
[3] 罗音,舒宁.基于信息量确定遥感图像主要波段的选择方法[J].城市勘测,2002,4:28-32.
[4] 杜华强,赵宪文,范文义.分形维数作为高光谱遥感数据波段选择的一个指标[J].遥感技术与应用,2004,19(1):5-9.
[5] 程乘旗,马廷,王立明.用于植被冠层分析的高光谱波段的组合方法研究[J].地理学与国土研究,2002,18(2):23-25.
[6] Sheffield C. Selecting Band Combinations from Multispectral Data [J]. Photogrammetric Engineering&Remote Sensing,1985,51(6):681-687.
[7] FUNG Tung, MA Fungyan, SIU Wailok.Band Selection using Hyperspectral Data of Subtropical Tree Species[OL].http://www.gisdevelopment.net/aars/acrs/1999/ps3/ps3055.asp.
[8] 年波,杨士剑,王金亮.植被遥感信息提取的最佳波段选择—以云岭中部山区为例[J].云南地理环境研究,2004,16(2):18-21.
[9] 高来之,丁暄,南君亚.新疆托里金矿资源调查区的岩石近紫外、可见光区反射光谱特征和波段选择的探讨[J].地质地球化学,1994,4:58-61.
[10] 王让会,刘培君.干旱区土壤水分遥感监测敏感波段的选择—以新疆阜康平原区为例[J].新疆气象,1995,18(5):24-26.
[11] 王昌佐,王纪华,王锦地,等.裸土表层含水量高光谱遥感的最 Selection for Remote Sensing Analysis[A]. In:International Geoscience and Remote Sensing Symposium[C].Maryland,USA, 1990,3:1285-1288.
[12] 张连蓬,储美华,刘国林,等.高光谱遥感波段选择牟非线性投影寻踪方法[J].徐州师范大学学报(自然科学版),2004,22(4):49-53.
[13] Millette T L. An Expert System Approach to Spectral Band Selection for Remote Sensing Analysis[A]. In:International Geoscience and Remote Sensing Symposium[C].Maryland,USA, 1990,3:1285-1288.
[14] 刘春红,赵春晖,张凌雁.一种新的高光谱遥感图像降维方法[J].中国图像图形学报,2005,10(2):218-222.

[1] 唐超,邵龙义. 高光谱遥感地物目标识别算法及其在岩性特征提取中的应用[J]. 遥感技术与应用, 2017, 32(4): 691-697.