Please wait a minute...
img

官方微信

遥感技术与应用  2007, Vol. 22 Issue (4): 570-574    DOI: 10.11873/j.issn.1004-0323.2007.4.570
技术方法     
基于MODIS数据的白天多层云检测算法
叶 晶1,严 卫1,曹 巍2
(1.解放军理工大学气象学院,江苏 南京 211101;2.解放军95871部队,湖南 衡阳 421002)
An Algorithm for Daytime Multilayered Cloud Detection Using MODIS Data
YE Jing1, YAN Wei1, CAO Wei2
(1.Institute of Meteorology PLA University of Sciences&Technology,Nanjing211101,China;2.No.95871Navy of PLA,Hengyang421002,China)
 全文: PDF 
摘要:

分析了一种利用中分辨率成像光谱仪(MODIS)数据进行白天多层云检测算法。首先利用IMAPP软件包中的云检测算法对像元区域进行云检测,然后采用红外三通道(8.5μm、11μm和12μm)技术进行云相态判识,区分出单层水云和单层冰云,最后利用2.1μm反射率和11μm亮度温度双通道散点图,计算出多层云像元在2.1μm和11μm两个通道上的取值范围,从而识别多层云系。利用该算法对热带风暴云系进行了多层云检测试验,试验结果显示算法可简单有效地识别典型的多层云系。

关键词: 多层云反射率亮度温度热带风暴    
Abstract:

An algorithm for daytime multilayered cloud detection using MOIDS data is presented. The algorithm is applied to pixel data from MODIS and is primarily based on the scatter plot of the nearinfrared 2.1μm channel reflectance and the 11μm brightness temperatures. Additional information used
by the algorithm includes the MODIS cloud mask from IMAPP and cloud thermodynamic phase inferred from the 8.5μm, 11μm and 12μmbrightness temperatures. The presented algorithm is evaluated by an multilayered cloud detection of tropical storm. The results show that the algorithm is reliably to identify areas containing typical multilayer cloud.

Key words: Multilayer cloud    Reflectance    Brightness temperature    Tropical storm
收稿日期: 2006-11-06 出版日期: 2011-11-25
:  TP 79  
作者简介: 叶晶(1981-),男,硕士研究生,主要从事卫星遥感反演的研究与应用。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

叶 晶,严 卫,曹 巍. 基于MODIS数据的白天多层云检测算法[J]. 遥感技术与应用, 2007, 22(4): 570-574.

YE Jing, YAN Wei, CAO Wei. An Algorithm for Daytime Multilayered Cloud Detection Using MODIS Data. Remote Sensing Technology and Application, 2007, 22(4): 570-574.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2007.4.570        http://www.rsta.ac.cn/CN/Y2007/V22/I4/570

[1] Mace G G, Benson-Troth S. Cloud-layer Overlap Characteristics Derived from Long-term Cloud Radar Data [J]. J. Climate,2002,15:2505-2515.
[2] Baum B A, Wielicki B A. Cirrus Cloud Retrieval Using Infrared Sounding Data:Multilevel Cloud Errors[J]. J.Appl Meteor,1994,33:107-117.
[3] Chung S, Ackerman S, Van Delst P F. Model Calculations and Interferometer Measurements of Ice-cloud Characteristics[J]. J.Appl. Meteor,2000,39:634-644.
[4] Gonzalez A, Wendling P, Mayer B,et al.Remote Sensing of Cirrus Cloud Properties in the Presence of Lower Clouds: An ATSR-2 Case Study During the Interhemispheric Differences in Cirrus Properties from Anthropogenic Emissions Experiment[J]. J.Geophys. Res., 2002,107:4693,doi:10.1029/2002JD002535.
[5] Baum B A, Nasiri S L. Daytime Multilayered Cloud Detection Using Multispectral Imager Data[J]. Geosci. Remote Sensing, 2004,21:1145-1156.
[6] 刘健,朱元竞.卫星资料在多层云系特征识别中的应用研究[J].红外与毫米波学报,2004,23(6):408-412.
[7] Baum, Spinhirne J D. Remote Sensing of Cloud Properties Using MODIS Airborne Simulator Imagery During SUCCESS.III. Cloud Overlap[J]. Geophys. Res., 2000,105:11793-11804.
[8] Strabala K I, Ackerman S A, Menzel W P.Cloud Properties Inferred from 8~12 mm Data[J]. J.Appl. Meteor, 1994,33:212-229.
[9] Platnick S, King M D, Ackerman S A,et al.The MODIS Cloud Products: Algorithms and Examples from Terra[J].IEEE Trans. Geosci. Remote Sensing, 2003,41:459-473.
[10] Ackerman S A, Strabala K I, Menzel W P,et al.Discriminating Clear Sky from Clouds with MODIS[J]. Geophys. Res., 1998,103:32141-32157.
[11] Barnes W L, Pagano T S, Salomonson V V.Prelaunch Characteristics of the Moderate Resolution Imaging Spectroradio meter(MODIS) on EOS-AMI[J]. IEEE Trans. Geosci. Remote Sensing, 1998,36:1088-1100.
[12]刘玉洁,杨忠东.MODIS遥感信息处理原理与算法[M].北京:科学出版社,2001.

[1] 谢旭,陈芸芝. 基于PSO-RBF神经网络模型反演闽江下游水体悬浮物浓度[J]. 遥感技术与应用, 2018, 33(5): 900-907.
[2] 李兆明,陈洪滨. 使用金属球定标X波段固态天气雷达[J]. 遥感技术与应用, 2018, 33(2): 259-266.
[3] 王佳鹏,施润和,张超,刘浦东,曾毓燕. 基于光谱分析的长江口湿地互花米草叶片叶绿素含量反演研究[J]. 遥感技术与应用, 2017, 32(6): 1056-1063.
[4] 吕利利,颉耀文,董龙龙. 基于不同地形校正模型的影像反射率对比分析[J]. 遥感技术与应用, 2017, 32(4): 751-759.
[5] 陈瑜丽,沈芳. 长江口及邻近海域悬浮颗粒物对叶绿素a遥感反演算法的影响分析[J]. 遥感技术与应用, 2016, 31(1): 126-133.
[6] 程洋,童立强. 基于背景多层次分离的遥感矿化蚀变信息提取模型及应用实例[J]. 遥感技术与应用, 2015, 30(3): 586-591.
[7] 张鹏,刘勇. MOD09A1数据产品中缺失条带的插补方法[J]. 遥感技术与应用, 2015, 30(2): 331-336.
[8] 吴岩真,闻建光,王佐成,唐勇,窦宝成. 遥感影像地形与大气校正系统设计与实现[J]. 遥感技术与应用, 2015, 30(1): 106-114.
[9] 陈洁,武胜利. MWRI与AMSR-亮温数据在极地冰盖区的对比分析[J]. 遥感技术与应用, 2014, 29(5): 752-760.
[10] 李红星,李弘毅,梁继,郝晓华,王建. 吸光性污染物对积雪光谱反射率的影响研究[J]. 遥感技术与应用, 2014, 29(5): 782-787.
[11] 杨凯,沈渭寿,刘波,欧阳琰. 那曲典型草地植被光谱特征分析[J]. 遥感技术与应用, 2014, 29(1): 40-45.
[12] 黄永喜,李晓松,吴炳方,董泰锋. 基于改进的ESTARFM数据融合方法研究[J]. 遥感技术与应用, 2013, 28(5): 753-760.
[13] 李振旺,刘良云,张 浩,张九星,李绪志. 天宫一号高光谱成像仪在轨辐射定标与验证[J]. 遥感技术与应用, 2013, 28(5): 850-857.
[14] 徐良将,黄昌春,李云梅,陈霞. 基于高光谱遥感反射率的总氮总磷的反演[J]. 遥感技术与应用, 2013, 28(4): 681-688.
[15] 凌成星,鞠洪波,张怀清. 基于波段反射率模拟的遥感影像重构研究[J]. 遥感技术与应用, 2012, 27(4): 530-535.