Please wait a minute...
img

官方微信

遥感技术与应用  2008, Vol. 23 Issue (3): 284-288    DOI: 10.11873/j.issn.1004-0323.2008.3.284
研究与应用     
利用MODIS数据监测北京地区气溶胶
王中挺1,2,3,陈良富1,2,张1,2,3,韩冬1,2,3,顾行发1,2
(1.中国科学院遥感应用研究所,遥感科学国家重点实验室,北京 100101;
2.国家航天局航天遥感论证中心, 北京 100101;3.中国科学院研究生院,北京 100039 )
Urban Surface Aerosol Monitoring Using DDV Method from MODIS Data
WANG Zhong-ting1,2,3,CHEN Liang-fu1,2,ZHANG Ying1,2,3,HAN Dong1,2,3, GU Xing-fa1,2
(1.State Key Laboratory of Remote Sensing Science,Jointly Sponsored by the Institute of the Institute of Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University,Beijing 100101, China ;2.Demonstration Center for Spaceborne Remote Sensing, National Space Administration, Beijing 100101, China|3.Graduate University of Chinese Academy of Sciences,Beijing 100039,China)
 全文: PDF(750 KB)  
摘要:

采用暗像元法对北京地区的气溶胶进行了监测:以2005~2007年的MODIS 1B数据为数据源,使用6S进行辐射传输计算构建查找表,进行气溶胶光学厚度的反演,并使用AERONET数据对结果进行验证,对冬季和夏季的监测结果进行了比较。结果表明,该算法能够较好地监测气溶胶,反映城市气溶胶的区域变化;但冬季时的监测结果要远远差于夏季,很难满足气溶胶监测需求。

关键词: MODIS气溶胶北京暗目标    
Abstract:

Taking Beijing area as an example,the aurban surface aerosol optic thickness has been tried to retrieve  using DDV (Dark Dense Vegetation) method from MODIS level1B data. Firstly, the LUT (Look Up Table) is built by 6S, the dark dense pixel is checked based on NDVI  and the retrieved AOD (Aerosol Optical Depth) is validated using the CE318 measurements from AERONET (Aerosol Robotic NETwork). The results show the DDV method can be used to monitor the urban aerosol very well during the summer and autumn in Beijing, but it losses its power in the winter.

Key words:  MODIS    Aerosol    Beijing    Dark dense vegetation
收稿日期: 2008-01-03 出版日期: 2011-10-25
:  TP 79  
基金资助:

863重大项目“多源卫星遥感大气污染综合监测技术(2006AA06A303)”资助。

作者简介: 王中挺(1980-:男,博士研究生,目前主要从事大气气溶胶方面的研究工作。E-mail:yzh_4_2002@sina.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王中挺,陈良富,张莹,韩冬,顾行发. 利用MODIS数据监测北京地区气溶胶[J]. 遥感技术与应用, 2008, 23(3): 284-288.

WANG Zhong-ting,CHEN Liang-fu,ZHANG Ying,HAN Dong,GU Xing-fa. Urban Surface Aerosol Monitoring Using DDV Method from MODIS Data. Remote Sensing Technology and Application, 2008, 23(3): 284-288.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2008.3.284        http://www.rsta.ac.cn/CN/Y2008/V23/I3/284

[1] Kaufman,Sendra C.Algorithm for Automatic AtmosphericCorrections to Visible and Near-IR Satellite Imagery[J].Int.J.Remote Sens.,1988,9:1357-1381.
[2] TanréD,Deschamps P Y,Devaux C,etal.Estimation of Saharan Aerosol Optical Thickness from Blurring Effects in Thematic Mapper Data[J]. J. Geophys. Res., 1988, 93: 15955-15964.
[3] Hsu C N,Tsay S C,King M D,et al.Aerosol Properties overBright-Reflecting[J]. IEEE Trans. Geosci. Remote Sens.,
2004,42(3):557-569.
[4] Wang L L, Xin J Y,Wang Y S,et al.Validation of MODISAerosol Products by CSHNET over China[J].Chinese Science Bulletin,2007,52(4):477-486[王莉莉,辛金元,王跃思,等. CSHNET观测网评估MODIS气溶胶产品在中国区域的适用性[J].科学通报,2007,52(4):477-486.]
[5] Li X J,Liu Y J,Qiu H,et al.Retrieval Method for OpticalThickness of Aerosols over Beijing and Its Vicinity by Using
the MODIS Data[J].Acta Meteorologica Sinica,2003,61(5):581-592.[李晓静,刘玉洁,邱红,等.利用MODIS资料反演北京及其周边地区气溶胶光学厚度的方法研究[J].气象学报,2003,61(5):581-592.]
[6] Li C C, Mao J T, Liu Q H.Remote Sensing Aerosol withMODIS and the Application of MODIS Aerosol Products[J].Acta Scientiarum Naturalium Universitatis Pekinensis,2003,39S:108-117.[李成才,毛节泰,刘启汉.利用MODIS遥感大气气溶胶及气溶胶产品的应用[J].北京大学学报(自然科学版),2003,39(增刊):108-117.]
[7] Vermote E D,Tanre J,Deuze L,et al.Second Simulation ofthe Satellite Signal in the Solar Spectrum 6S:An Overview[J].IEEE Trans.Geosci.Remote Sens.,1997,35:675-686.
[8] Gatebe C K,King M D ,etal.Sensitivity of Off-nadir Zenith Angles to Correlation Between Visible and Near-infrared Reflectancefor Use in Remote Sensing of Aerosol over Land[J].IEEE Trans.Geosci.Remote Sens.,2001,39(4):805-819.
[9] Remer L A,Wald A E.Angular and Seasonal Variation ofSpectral Surface Reflectance Ratios:Implications for the Remote Sensing of Aerosol over Land[J].IEEE Trans.Geosci.Remote Sens.,2001,39(2):275-283.
[10] Tucker C J.Red and Photographic Infrared Linear Combinations Monitoring Vegetation [J].Remote Sensing of Environment,1979,8:142-150.
[11] Remer L A,TanréD,Yoram.Kaufman Algorithm for RemoteSensing of Tropospheric Aerosol from MODIS:Collection 5[M].Unpublished,2006.
[12] Holben B N,Eck T F,Slutsker I,et al.AERONET-a Federated Instrument Network and Data Archive for Aerosol Characterization[J].Remote Sensing of Environment,1998,66:1-16.

[1] 金点点,宫兆宁. 基于Landsat 系列数据地表温度反演算法对比分析—以齐齐哈尔市辖区为例[J]. 遥感技术与应用, 2018, 33(5): 830-841.
[2] 冯姣姣,王维真,李净,刘雯雯. 基于BP神经网络的华东地区太阳辐射模拟及时空变化分析[J]. 遥感技术与应用, 2018, 33(5): 881-889.
[3] 胡云锋,商令杰,张千力,王召海. 基于GEE平台的1990年以来北京市土地变化格局及驱动机制分析[J]. 遥感技术与应用, 2018, 33(4): 573-583.
[4] 汪航,师茁. 基于MODIS时间序列数据的春尺蠖虫害遥感监测方法研究—以新疆巴楚胡杨为例[J]. 遥感技术与应用, 2018, 33(4): 686-695.
[5] 拉巴卓玛,次珍. 2002~2015年西藏雅鲁藏布江流域积雪变化及影响因子分析研究[J]. 遥感技术与应用, 2018, 33(3): 508-519.
[6] 汤玉明,邓孺孺,刘永明,熊龙海. 大气气溶胶遥感反演研究综述[J]. 遥感技术与应用, 2018, 33(1): 25-34.
[7] 张帅,师春香,梁晓,贾炳浩,吴捷. 风云三号积雪覆盖产品评估[J]. 遥感技术与应用, 2018, 33(1): 35-46.
[8] 陈健,周杰,李雅雯. 基于静止卫星GOCI数据的陆地上空气溶胶光学厚度遥感反演[J]. 遥感技术与应用, 2017, 32(6): 1040-1047.
[9] 孙晓,吴孟泉,何福红,张安定,赵德恒,李勃 . 2015年黄海海域浒苔时空分布及台风“灿鸿”影响研究[J]. 遥感技术与应用, 2017, 32(5): 921-930.
[10] 黎微微,胡斯勒图,陈洪滨,尚华哲. 利用MODIS资料计算不同云天条件下的地表太阳辐射[J]. 遥感技术与应用, 2017, 32(4): 643-650.
[11] 姜涛,朱文泉,詹培,唐珂,崔雪锋,张天一. 一种抗时序数据噪声的冬小麦识别方法研究[J]. 遥感技术与应用, 2017, 32(4): 698-708.
[12] 许青云,顾伟伟,谢涛,刘锐. 秸秆焚烧火点遥感监测算法实现[J]. 遥感技术与应用, 2017, 32(4): 728-733.
[13] 唐志光,王建,王欣,彭焕华,梁继. 近15年天山地区积雪时空变化遥感研究[J]. 遥感技术与应用, 2017, 32(3): 556-563.
[14] 葛美香,赵军,仲波,杨爱霞. FY-3/VIRR及MERSI与EOS/MODIS植被指数比较与差异原因分析[J]. 遥感技术与应用, 2017, 32(2): 262-273.
[15] 杨志刚,达娃,除多. 近15 a青藏高原积雪覆盖时空变化分析[J]. 遥感技术与应用, 2017, 32(1): 27-36.