Please wait a minute...
img

官方微信

遥感技术与应用  2008, Vol. 23 Issue (6): 624-628    DOI: 10.11873/j.issn.1004-0323.2008.6.624
研究与应用     
基于表层水分含量指数(SWCI)的土壤干旱遥感监测
张红卫1,2,3,陈怀亮1,申双和3,周官辉2,余卫东1
(1.河南省气象科学研究所|河南 郑州 450003;2.河南省新乡市气象局|河南 新乡453000;3.南京信息工程大学应用气象学院|江苏 南京210044)
Drought Remote Sensing Monitoring Based on the Surface Water Content Index(SWCI) Method
ZHANG Hong-wei1,2,3,CHEN Huai-liang1,SHEN Shuang-he3
ZHOU Guan-hui2,YU Wei-dong1
(1.Henan Institute of Meteorology,Zhengzhou 450003,China;2.Xinxiang Meteorological Bureau,Xinxiang 453000,China;3.Institute of Applied Meteorology ofNanjing University of Information Science and Technology,Nanjing 210044,China;)
 全文: PDF(880 KB)  
摘要:

土壤湿度和植被生长状况是干旱最重要和最直接的指标,对植被和土壤光谱特征的解译是进行旱情程度判断的重要因子。近期,基于水的光谱反射特性,提出的地表含水量指数(SWCI) 模型能较好地反映地表的含水量值及其变化,可用于大范围的快速的浅层土壤墒情遥感监测。通过与NDVI对比分析发现, 在对浅层(0~50 cm)土壤水分进行监测时,SWCI 比NDVI 更为敏感,这有助于在实时干旱动态监测中更好地采用不同的指数以提高监测精度。

关键词: 地表含水量指数(SWCI)归一化植被指数(NDVI)干旱遥感监测    
Abstract:

Soil Moisture and Vegetation Growth are the most important and direct index in drought monitoring,and the spectral interpretation of vegetation and soil are serious factors in the judgment of drought degree.Based on the spectral character of water,recently,a new model of Surface Water Content Index(SWCI) has been put forward,and the index is more sensitive to the surface water content,and suit for regional drought monitoring.The comparative analysis showed that SWCI is more sensitive than NDVI to monitoring surface soil water content,it is available in real-time soil drought monitoring.

收稿日期: 2008-06-23 出版日期: 2011-11-07
:  TP 79  
基金资助:

“十一五”国家科技支撑计划项目(2006BAD04B01),风云三号卫星遥感开发与应用项目 (20070806-FiDAFS-1-01)及河南省气象局重点科研项目(Z200506、Z2008019、Z200806)联合资助。

作者简介: 张红卫(1966-)男,高级工程师,研究方向为遥感与应用气象。 E-mail:xxqxjzhw1966@163.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

张红卫,陈怀亮,申双和,周官辉,余卫东. 基于表层水分含量指数(SWCI)的土壤干旱遥感监测[J]. 遥感技术与应用, 2008, 23(6): 624-628.

ZHANG Hong-wei,CHEN Huai-liang,SHEN Shuang-he. Drought Remote Sensing Monitoring Based on the Surface Water Content Index(SWCI) Method. Remote Sensing Technology and Application, 2008, 23(6): 624-628.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2008.6.624        http://www.rsta.ac.cn/CN/Y2008/V23/I6/624

[1] Di L,Rundquist D C,Han L.Modeling Relationships Between NDBI and Precipitation During Growth Cycle[J].International Journal of Remote Sensing,1994,5(10):2121-2136.
[2] Kogan F N.Remote Sensing of Weather Impacts on Vegetation in Non-omogeneous Areas[J].International Journal of Remote Sensing,1990,11(8):1405-1419.
[3]    Liu W,Ferreira A.Monitoring Crop Production Regions in the Sao Paulo State of Brazil Using Normalized Difference Vegetation Index[C].Proc.24th.International Symposium on Remote Sensing of Environment,Rio de Janeiro, Brazil,1991,(2):447-455,27-31.
[4] Peters A J,Walter-Shea E A ,Lei J ,et al.Drought Monitoring with NDVI-based Standardized Vegetation Index [J].Photogrammetric Engineering and Remote Sensing,2002,65(1):71-75.
[5]     Unganai L S ,Kogan F N.Drought Monitoring and Corn Yield Estimation in Southern Africa from AVHRR Data[J].Remote Sensing of Environment,1998,63(3):219-232.
[6] Yang L,Wylie B K,Tieszen L L,et al.An Analysis of Relationships among Climate Forcing and Time-integrated NDVI of Grasslands over the U.S.Northern and Central Great Plains [J].Remote Sensing of Environment,1998.65(1):25-37.
[7] Nemani R,Price L,Running S,et al.Developing Satellite Derived Estimates of Surface Moisture Status[J].Journal of Applied Meteorology,1993,32(3):548-557.
[8] Carlson T N,Ripley D A.On the Relation Between NDVI,Fractional Vegetation Cover and Leaf Area Index[J].Remote Sensing of Environment,1997,62(3):241-252.
[9] Ceccato P,Gobron N,Flasse S,et al.Designing a Spectral Index to Estimate Vegetation Water Content from Remote Sensing Data:Part 1,Theoretical Approach[J].Remote Sensing of Environment,2002,82(2/3):188-197.
[10] Du X,Zhou Y,Wang S X,et al.Monitoring and Spatio Temporal Evolution Researching on Vegetation Leaf Water in China[C].International Geoscience and Remote Sensing Symposium(IGARSS),Anchorage,Alaska,USA,2004.
[11] Ceccato P,Flasse S,Gregoire J M.Designing a Spectral Index to Estimate Vegetation Water Content from Remote Sensing Data:Part 2.Validation and Applications[J].Remote Sensing of Environment,2002,82(2/3):198-207.
[12] Du X,Wang S X,Zhou Y,et al.Construction and Validation of a New Model for Unified Surface Water Capacity Based on EOS/MODIS Data[J].Geomatics and Information Science of Wuhan University,2007,32(3):205-208.[杜晓,王世新,周艺,等.一种新的基于MODIS的地表含水量模型构造与验证[J].武汉大学学报(信息科学版),2007,32(3):205-208.]
[13] Gitelson A A.Wide Dynamic Range Vegetation Index for Remote Quantification of Biophysical Characteristics of Vegetation[J].Journal of Plant Physiology,2004,161(2):165-173.
[14] Richardson A J,Wiegand C L.Distinguishing Vegetation from Soil Background Information[J].Photogrammetric Engineering and Remote Sensing,1977,43(12):1541-1552.
[15] Jackson R D.Spectral Indices in N-space[J].Remote Sensing of Environment,1983,13(5):409-421.
[16] Ghulam A.Remote Monitoring of Farmland Drought Based N-dimensional Spectral Feature Space[D].PhD Dissertation (In Chinese),Peking University,Beijing,2006.
[17] Liu Y J,Yang Z D.The Processing and Algorithm on EOS/MODIS Remote Sensing[M].Beijing:Science Press,2001.[刘玉洁,杨忠东.MODIS遥感信息处理原理与算法[M].北京:科学出版社,2001.]
[18] Guo N.Vegetation Index and Its Advances[J].Arid Meteorology,2003,21(4):71-75.[郭妮.植被指数及其研究进展[J].干旱气象,2003,21(4):71-75.]
[19] Zhang C C,Wu Z N,Yu H X.The Compare Studied to the Methods of Estimating Soil Moisture by Remote Sensing[J].Journal of Irrigation and Drainage,2004,23(2):69-72.[张成才,吴泽宁,余弘信.遥感计算土壤含水量方法的比较研究[J].灌溉排水学报,2004,23(2):69-72.]
[20] Li J L,Jiang P,Liu P J,et al.The Study on Dynamic Monitoring Soil Water Contents Using Remote Sensing Optical Method[J].Acta Ecologica Sinica,2003,23(8):1498-1504.[李建龙,蒋平,刘培君,等.利用遥感光谱法进行农田土壤水分遥感动态监测[J].生态学报,2003,23(8):1498-1504.]
[21] Tian G L.The Remote Sensing Methods for Monitoring Soil Moisture[J].Remote Sensing of Environment,1991,16(2):89-99.[田国良.土壤水分的遥感监测方法[J].环境遥感,1991,16(2):89-99.]

[1] 陈涛,李平湘,张良培. 武汉地区1988~2002年植被覆盖度变化动态分析[J]. 遥感技术与应用, 2008, 23(5): 511-516.
[2] 莫 瑶,郑有飞,陈怀亮,邹春辉. 1982~2000年黄淮海地区植被覆盖变化特征分析[J]. 遥感技术与应用, 2007, 22(3): 396-402.