Please wait a minute...
img

官方微信

遥感技术与应用  2008, Vol. 23 Issue (6): 629-632    DOI: 10.11873/j.issn.1004-0323.2008.6.629
研究与应用     
基于CFAR海上溢油检测研究
邹亚荣1,2,王华1,邹斌1
(1.国家卫星海洋应用中心,北京100081;2.卫星海洋环境动力学国家重点实验室,浙江 杭州310012)
Sea Surface Oil Spill Detection Based on CFAR
ZOU Ya-rong1,2,WANG Hua1,ZOU Bin1
(1.National Satellite Ocean Application Service,Beijing 100081,China;2.State Key Laboratory of Satellite Ocean Environment Dynamics,Hangzhou 330012,China)
 全文: PDF(879 KB)  
摘要:

在SAR图像处理的基础上,提出一种新的基于恒虚警率( CFAR-Constant False Alarm Rate) 技术,确定SAR 图像中检测溢油整体阈值的方法。该方法采用高斯分布(正态分布) 作为SAR 图像灰度的概率密度函数,由CFAR 技术直接导出用于检测海上溢油整体阈值的计算公式,进行虚警去除。该算法避免了复杂公式迭代和求解形状参数计算过程,也避免了用二分法寻找阈值的循环解算过程,提高了检测速度。使用ENVISAT图像对该算法进行检验,结果显示所提出的算法在检测精度和检测速度上都有明显的改进。

关键词: CFARSAR溢油    
Abstract:

 A novel method is presented for oil spill detection in synthetic aperture radar (SAR) images,which is based on the constant false alarm rate (CFAR) technique and considers the probability density function of sea clutter as Gaussian distribution.All possible oil spills are detected using an overall threshold,which is calculated using the analytic formula.Then a statistic filter is used to eliminate the false oil spill pixels.This method avoids complicated iteration,calculation of shape parameters and dichotomy threshold,and therefore its accuracy and computation speed are improved,which are demonstrated by the results.In the paper,the main  techniques for oil spill detection in SAR images are reviewed.A novel method is presented,which is based on CFAR technique and Gaussian distribution of sea surface clutter.In this method,CFAR operator is given based on Gaussian distribution (normal distribution),and the statistic filter is introduced to eliminate the false oil spill pixels,finally the framework of the method is described.The ASAR images are used for the algorithm test.Parameters such as detection threshold,computation time,etc.Results and comparison show that the new method proposed  in this paper has advantages of high accuracy and computation speed.

Key words: CFAR    SAR    Oil spill
收稿日期: 2008-04-22 出版日期: 2011-11-07
:  TP 79  
基金资助:

海洋公益项目,溢油遥感监测信息自动提取技术研究及其业务化应用示范(200705018);卫星海洋环境动力学国家重点实验室2006年基金支持(SOED0610)。

作者简介: 邹亚荣(1967-)男,博士,主要从事海洋遥感与GIS应用。E-mail:yrzou@sina.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

邹亚荣,王华,邹斌 . 基于CFAR海上溢油检测研究[J]. 遥感技术与应用, 2008, 23(6): 629-632.

ZOU Ya-rong,WANG Hua,ZOU Bin. Sea Surface Oil Spill Detection Based on CFAR. Remote Sensing Technology and Application, 2008, 23(6): 629-632.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2008.6.629        http://www.rsta.ac.cn/CN/Y2008/V23/I6/629

[1] Indregard M,Solberg A,Clayton P.D2-report on Benchmarking Oil Spill Recognition Approaches and Best Practice[R]. Tech rep.,Oceanides Project,European Commission,Archive No.04-10225-A-Doc,Contract No:EVK2-CT-2003-00177,2004.
[2] Brekke C,Solberg A H S.Oil Spill Detection by Satellite Remote Sensing [J]. Remote Sensing of Environment, 2005,(95):1-13.
[3] Fiscella B,Giancaspro A,Nirchio F,et al.Oil Spill Detection Using Marine SAR Images[J].International Journal of Remote Sensing,2000,21(18):3561-3566.
[4] Skoelv A,Wahl T.Oil Spill Detection Using Satellite Based SAR,Phase 1B Competition Report[R].Tech.Rep.,Norwegian Defence Research Establishment,1993.
[5] Vachon P W,Thomas S J,Cranton J A,et al.Monitoring the Coastal Zone with the Radarsat Satellite[J].Oceanology International 98,Uk,March,1998,10-13.
[6] Solberg A H S,Dokken S T.Automatic Detection of Oil Spills in Envisat,Radarsat,and ERS SAR Images[J].Proc.IGARSS'96,2003,3:2747-2749.
[7] Canny J.A Computational Approach to Edge Detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence.PAMI,1986,8(6):679-698.
[8] Frate F D,Petrocchi A ,Lichtenegger J,et al.Neural Networks for Oil Spill Detection Using ERS-SAR Data[J].IEEE
Transactions on Geosciences and Remote Sensing, 2000, 38(5):2282-2287.
[9] Hou S G,Zhang H,Wang C,et al.A Novel Method for Ship Detection in SAR Images[J]. Journal of Remote Sensing,2005,9(1):50-56.[侯四国,张红,王超,等.一种新的SAR图像船只检测方法[J].遥感学报,2005,9(1):50-56.]
[10] Hong W,Hu D H.Digital Processing of Synthetic Aperture Radar Data:Algorithms and Implementation[M].Publishing House of Electronics Industry,Beijing,2007,115-145.[洪文,胡东辉(译)Ian G.Cumming,Frank H.wong,(著).合成孔径雷达成像—算法与实现[M].北京:电子工业出版社,2007,115-145.]

[1] 李姣姣,刘玉,陈锟山. 基于香农熵的极化SAR相干矩阵信息量评价#br#[J]. 遥感技术与应用, 2018, 33(5): 842-849.
[2] 王常颖,田德政,韩园峰,隋毅,初佳兰. 基于属性差决策树的全极化SAR影像海冰分类[J]. 遥感技术与应用, 2018, 33(5): 975-982.
[3] 郭欣,赵银娣. 基于Sentinel-1A SAR的湖南省宁乡市洪水监测[J]. 遥感技术与应用, 2018, 33(4): 646-656.
[4] 张程,张红,王超. 基于PCDM香农熵的全极化SAR图像船舶目标检测方法[J]. 遥感技术与应用, 2018, 33(3): 499-507.
[5] 刘建歌,慕德俊. 基于SAR影像海冰动态特征的提取方法[J]. 遥感技术与应用, 2018, 33(1): 55-60.
[6] 张王菲,陈尔学,李增元,赵磊,姬永杰. 干涉、极化干涉SAR技术森林高度估测算法研究进展[J]. 遥感技术与应用, 2017, 32(6): 983-997.
[7] 周晓宇,陈富龙. 四川大熊猫栖息地PALSAR时序数据森林覆盖动态监测研究[J]. 遥感技术与应用, 2017, 32(6): 1100-1106.
[8] 扎西央宗,李林,卓玛,冯岩,李学东,白玛央宗. 西藏年楚河流域冰川变化监测方法研究[J]. 遥感技术与应用, 2017, 32(6): 1126-1131.
[9] 姜爱辉,刘国林,陈富龙. 基于PALSAR-1影像的汉函谷关遗迹变化检测研究[J]. 遥感技术与应用, 2017, 32(5): 787-793.
[10] 尤江彬,陈富龙. 西域都护府/且末古城数字地望考与长波段雷达次地表考古初探[J]. 遥感技术与应用, 2017, 32(5): 794-800.
[11] 张宝华,周文涛,吕晓琪. 基于稀疏分解和改进MRF模型的SAR海冰图像分割方法[J]. 遥感技术与应用, 2017, 32(4): 709-713.
[12] 王苏芸,孙中昶,郭华东,申维. 基于面向对象的东营市城乡建设用地信息提取[J]. 遥感技术与应用, 2017, 32(4): 780-786.
[13] 孙亚勇,黄诗峰,李纪人,李小涛,马建威,曲伟. Sentinel-1A SAR数据在缅甸伊洛瓦底江下游区洪水监测中的应用[J]. 遥感技术与应用, 2017, 32(2): 282-288.
[14] 王娜,李强子,赵龙才,王红岩,李德江,黄慧萍. 基于变异系数法的SAR船舶检测优化研究[J]. 遥感技术与应用, 2017, 32(2): 305-314.
[15] 肖瑶,赵萍,范泽琳,陈国旭. TerraSAR-X数据在淮南矿区沉陷监测中的应用[J]. 遥感技术与应用, 2017, 32(1): 95-103.