Please wait a minute...
img

官方微信

遥感技术与应用  2008, Vol. 23 Issue (6): 639-642    DOI: 10.11873/j.issn.1004-0323.2008.6.639
研究与应用     
云南省腾冲县几种蔬菜反射光谱特征的初步分析
杨存建1,2,杨建祥3,李春燕4,任国业5
(1.四川师范大学省软件重点实验室遥感与GIS应用研究中心,四川 成都610068;2.云南大学生态研究所,云南 昆明650091;3.云南省林业调查规划设计院,云南 昆明650051;4.电子科技大学地表空间信息技术研究所,四川 成都10054;5.四川省农业科学研究院遥感应用研究所,四川 成都610066)
Analysis of the Spectrum Feature of Different Vegetable in Tengchong County of Yunnan Province
YANG Cun-jian1,2,YANG Jian-xiang3,LI Cun-yan4,REN Guo-ye5
(1.The Research Center of RS &|GIS Applications,Sichuan Normal University,Chengdu 610068,China;2 Institute of Ecology and Geobotany,Yunnan University,Kunming 650091,China;3.Yunnan Institute of Forestry Plan and Design,Kunming 650051,China;4.Institute of Geo-surfaceInformation Technology,University of Electronic and Technology of China,Chengdu 610054,China;5.Sichuan Academy of Agriculture Science,Institute of Remote Sensing Applications,Chengdu 610066,China)
 全文: PDF(646 KB)  
摘要:

蔬菜光谱特征的测定和分析对遥感识别蔬菜具有极其重要的意义。利用SE590地物光谱仪在野外对腾冲县的几种蔬菜进行了反射光谱值的测定,并制作了光谱曲线图,对其光谱特征进行了分析。在此基础上,对其光谱数据进行一阶导数的变换,并对各蔬菜的一阶导数的特征进行了分析。研究表明,在波长400~679 nm的范围上,可以根据其反射值的高低,将蔬菜分为两组,一组为大白菜、豌豆、牛皮菜和青菜,另一组为葱、大蒜和香菜。对于第一组而言,根据反射的峰值、谷值、坡度和反射值的高低等特征可以将它们区别开。对于第二组而言,根据其在726~1 100 nm范围上反射值的高低,可以将其区别开来。就各种蔬菜的一阶导数特征而言,大白菜、豌豆、大蒜、葱和香菜等均在特定的波段位置存在着独特的一阶导数特征,据此可以将其区别出来。而牛皮菜和青菜却没有独特的一阶导数特征。

关键词: 光谱蔬菜特征分析    
Abstract:

The measure and analysis of the spectrum of vegetables is very important for applying remote sensing in identifying vegetable.The spectrum data of the different vegetables such as Chinese cabbage,garden pea,cattle vegetable,verdure,garlic,onion,parsley are gotten by using SE590 hyper\|spectral radiometer in Tengchong county of Yunnan province.The spectrum curves of the vegetables are made based on the spectrum data.The spectrum feature is analyzed based on the spectrum data.The first order derivative transfer was carried out in the spectrum data.The first order derivative feature is analyzed.It is shown that:The vegetables can be divided into two groups according to their reflectivity during 400nm to 679nm.The first group with higher reflectivity includes Chinese cabbage,garden pea,cattle vegetable,verdure.The second group with lower reflectivity includes onion,garlic and parsley.Each vegetable can be differentiated from each other according to the peak value,valley value and slope of their spectrum curves,and their reflectivity value in the first group.Each vegetable can be differentiated from each other according to their reflectivity values during 726nm to 1 100nm in the second group.The unique first order derivative feature can be used to identify Chinese cabbage,garden pea,garlic,onion and parsley.

Key words: Spectrum    Vegetable    Feature analysis
收稿日期: 2008-04-21 出版日期: 2011-11-07
:  TP 79  
基金资助:

云南省应用基金资助项目(2000D0002Q);国家自然科学基金项目(40771144)资助。

作者简介: 杨存建(1967-),男,博士,教授,主要从事遥感和地理信息系统应用研究。E-mail:yangcj2008@126.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

杨存建,杨建祥,李春燕,任国业. 云南省腾冲县几种蔬菜反射光谱特征的初步分析[J]. 遥感技术与应用, 2008, 23(6): 639-642.

YANG Cun-jian,YANG Jian-xiang,LI Cun-yan,REN Guo-ye. Analysis of the Spectrum Feature of Different Vegetable in Tengchong County of Yunnan Province. Remote Sensing Technology and Application, 2008, 23(6): 639-642.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2008.6.639        http://www.rsta.ac.cn/CN/Y2008/V23/I6/639

[1] Zhang K,Guo N,Wang R Y,et al.Research on Spectral Reflectance Characteristics for Desert Meadow of North West China[J]. Advances in Earth Science, 2006, 21 (10): 1063-1069.[张凯,郭铌,王润元,等.西北荒漠草甸植被光谱反射特征研究[J].地球科学进展,2006,21(10),1063-1069.]
[2] LeemanV.The NASA Earth Resources Spectral Information System:A Data Compilation[M]. NASA-CR-115757, Willo RunLab,MichiganUniversity,1971.
[3] Su L H,Li X W,Wang J D,etal.Some Problems in Constructing the Ground Object Spectral Knowledge Base and Its Services[J]. Advances in Earth Science, 2003, 18 (2): 185-191.[苏理宏,李小文,王锦地,等.典型地物光谱知识库建库
与光谱服务的若干问题[J].地球科学进展,2003,18(2):185-191.]
[4]   Wu R Q,Yang C J. A Pilot Study of Reflecting Spectrum Characteristics for Rape in Tengchong County of Yunnan
Province[J].Geo-Information Science,2006,8(4):136-140.[伍瑞卿,杨存建.云南省腾冲油菜反射光谱特征与应用分析[J].地球信息科学,2006,8(4):136-140.]
[5] Tong Q X,Zheng L F,Wang J N,et al.Study on Imaging Spectrometer Remote Sensing Information for Wetland Vegetation[J].Journal of Remote Sensing,1997,1(1):50-57.[童庆禧,郑兰芬,王晋年,等.湿地植被成像光谱遥感研究[J].遥感学报,1997,1(1):50-57.]
[6] Pu R L,Gong P.Hyperspectral Remote Sensing and Its Applications[M]. Beijing: Higher Education Press, 2000: 123-327.[浦瑞良,宫鹏.高光谱遥感及其应用[M].北京:高等教育出版社,2000:123-327.]
[7] Tian Q J,Gong P,Zhao C J,et al.A Feasibility Study on Diagnosing Wheatwater Status Using Spectral Reflectance[J].Chinese Science Bulletin,2000,45(24):2645-2650.[田庆久,宫鹏,赵春江,等.用光谱反射率诊断小麦水分状况的可行性分析[J].科学通报,2000,45(24):2645-2650.]
[8] Tang Y L,Huang J F,Wang X Z,et al.Comparison of the Characteristics of Hyperspectra and the Red Edge in Rice Corn and Cotton[J].Scientia Agricultura Sinica,2004,37(1):29-1067.[唐延林,黄敬峰,王秀珍,等.水稻、玉米、棉花的高光谱及其红边特征比较[J].中国农业科学,2004,37(1):29-35.]
[9] Liu J M,Chen J P.Indexing of Spectrum Curves:Method and Implication[J].Advances in Earth Science,1995,10(2):205-209.[刘建明,陈建平.光谱曲线指数化的方法和意义[J].地球科学进展,1995,10(2):205-209.]
[10] Tian G L.Imaging Spectrometry Remote Sensing Technology in Geological Investigations on Themineral Resources[J].Advances in Earth Science,1992,7(5):74-75.[田国良.矿产地质调查中的成像光谱遥感技术[J].地球科学进展,1992,7(5):74-75.]
[11] Wan Y Q,Zhang F L,Yan Y Z.The Application of the Hyperspectral Remote Sensing Technology to Water Environment Monitoring[J].Remote Sensing for Land & Resources,2003,(3):10-14.[万余庆,张凤丽,闫永忠.高光谱遥感技术在水环境监测中的应用研究[J].国土资源遥感,2003,(3):10-14.]
[12] Xie L J,Ying Y B,Yu H Y,etal.Application of Near Infrared Spectroscopy Technique to Nondestructive Measurement of Vegetable Quality[J].Spectroscopy and Spectral Analysis,2007,27(6):1131-1135.[谢丽娟,应义斌,于海燕,等.近红外光谱分析技术在蔬菜品质无损检测中的应用研究进展[J].光谱学与光谱分析,2007,27(6):1131-1135.

[1] 汪子豪,秦其明,孙元亨. 基于BP神经网络的地表温度空间降尺度方法[J]. 遥感技术与应用, 2018, 33(5): 793-802.
[2] 石满,陈健,覃帮勇,李盛阳. 天宫二号数据地表温度反演及其在城市群热环境监测中的应用[J]. 遥感技术与应用, 2018, 33(5): 811-819.
[3] 韩涛,潘剑君,张培育,曹罗丹. Sentinel-2A与Landsat-8影像在油菜识别中的差异性研究[J]. 遥感技术与应用, 2018, 33(5): 890-899.
[4] 高莎,林峻,马涛,吴建国,郑江华. 新疆巴音布鲁克草原马先蒿光谱特征提取与分析[J]. 遥感技术与应用, 2018, 33(5): 908-914.
[5] 陈伟民,张凌,宋冬梅,王斌,丁亚雄,许明明,崔建勇. 基于AdaBoost改进随机森林的高光谱图像地物分类方法研究[J]. 遥感技术与应用, 2018, 33(4): 612-620.
[6] 钟函笑,边金虎,李爱农. Landsat-8 OLI与Sentinel-2 MSI山区遥感影像辐射一致性研究[J]. 遥感技术与应用, 2018, 33(3): 428-438.
[7] 苏阳,祁元,王建华,徐菲楠,张金龙. 基于航空高光谱影像的额济纳绿洲土地覆被提取[J]. 遥感技术与应用, 2018, 33(2): 202-211.
[8] 秦振涛,杨茹,张靖,杨武年. 基于聚类结构自适应稀疏表示的高光谱遥感图像修复研究[J]. 遥感技术与应用, 2018, 33(2): 212-215.
[9] 郭宇柏,卓莉,陶海燕,曹晶晶,王芳. 基于空谱初始化的非负矩阵光谱混合像元盲分解[J]. 遥感技术与应用, 2018, 33(2): 216-226.
[10] 刘爱林,郭宝平,李岩山 . 基于离散粒子群算法的凸多模态高光谱图像端元提取研究[J]. 遥感技术与应用, 2018, 33(2): 227-232.
[11] 吴兴,张霞,孙雪剑,张立福,戚文超. SPARK卫星高光谱数据辐射质量评价[J]. 遥感技术与应用, 2018, 33(2): 233-240.
[12] 段金亮,王杰,张婷. 一种基于光谱归一化下的植被覆盖度反演算法[J]. 遥感技术与应用, 2018, 33(2): 252-258.
[13] 王光镇,王静璞,邹学勇,韩柳,宗敏. 遥感技术估算非光合植被覆盖度研究综述[J]. 遥感技术与应用, 2018, 33(1): 1-9.
[14] 宋婷婷,付秀丽,陈玉,魏永明,王钦军,程先锋. 云南个旧矿区土壤锌污染遥感反演研究[J]. 遥感技术与应用, 2018, 33(1): 88-95.
[15] 刘慧珺,苏红军,赵-波. 基于改进萤火虫算法的高光谱遥感多特征优化方法[J]. 遥感技术与应用, 2018, 33(1): 110-118.