Please wait a minute...
img

官方微信

遥感技术与应用  2009, Vol. 24 Issue (5): 582-587    DOI: 10.11873/j.issn.1004-0323.2009.5.582
技术研究与图像处理     
利用多时相ASAR数据反演黑河流域中游地表土壤水分
王树果1,2,李 新1,韩旭军1,晋 锐1
1.中国科学院寒区旱区环境与工程研究所,甘肃 兰州 730000 |2.中国科学院研究生院,北京 100039
Derivation of Surface Soil Moisture in the Middle Stream of Heihe River Basin Using Multi-temporal ASAR Images
WANG Shu-guo1,2,LI Xin1,HAN Xu-jun1,JIN Rui1
1.Cold and Arid Regions Environmental and Engineering Research Institute,Chinese Academy ofSciences,Lanzhou 730000,China 2.University of Chinese Academy of Science,Beijing 100039,China
 
 全文: PDF(1122 KB)  
摘要:

土壤水分是地表能、水循环过程中的重要变量之一,利用主动微波遥感,特别是合成孔径雷达(SAR)进行土壤水分的反演已经越来越受到人们的关注。地表与微波相互作用机理非常复杂,受到粗糙度的强烈影响,成为制约土壤水分准确反演的一个重要因素。利用3景时序接近的ASAR影像对黑河中游临泽草地试验区地表参数进行了多通道的反演,获得了像元尺度上的粗糙度分布状况,从而不需要借助粗糙度的地面测量辅助信息,节省了工作量。土壤水分反演取得了较为满意的结果(均方根误差< 6%)。

关键词: 土壤水分 微波遥感 粗糙度 ASAR    
Abstract:

Soil moisture is a key variable for the cycling of water and energy in the soil-atmosphere intreface.Active microwave remote sensing,especially radar remote sensing has shown its potential for retrieving soil moisture from soil surfaces.Since the backscattering process is very complicated and also influenced by soil roughness,the characterization of this roughness is crucial for an accurate estimation.The algorithm proposed in this investigation aiming to obtain the roughness parameters and soil moisture in SAR pixel scale simultaneously without the ancillary roughness ground measurements in virtue of 3 scenes ASAR images.An evaluation was performed in the middle stream of Heihe river basin and achieved reliable results (RMSE less than 6 vol %).

Key words: Soil moisture    Active remote sensing    Soil roughness    ASAR
收稿日期: 2009-04-25 出版日期: 2010-08-24
基金资助:

中国科学院西部行动计划(二期)项目“黑河流域遥感—地面观测同步试验与综合模拟平台建设”(KZCX2XB2-09)资助 |863计划专题课题“多源遥感数据同化通用软件系统研制”(2009AA12Z130) |中欧科技合作项目“龙计划”2期课题“中国干旱地区典型内陆河流域关键生态-水文参数的反演与陆面同化系统研究”(Project ID 5322)提供ASAR影像。

作者简介: 王树果(1980-)男,博士研究生,主要从事微波遥感理论及应用研究。E-mail:sgwang@lzb.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王树果
李 新
韩旭军
晋 锐

引用本文:

王树果, 李 新, 韩旭军, 晋 锐. 利用多时相ASAR数据反演黑河流域中游地表土壤水分[J]. 遥感技术与应用, 2009, 24(5): 582-587.

WANG Shu-Guo, LI Xin, HAN Xu-Jun, JIN Rui. Derivation of Surface Soil Moisture in the Middle Stream of Heihe River Basin Using Multi-temporal ASAR Images. Remote Sensing Technology and Application, 2009, 24(5): 582-587.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2009.5.582        http://www.rsta.ac.cn/CN/Y2009/V24/I5/582

 [1] Ulaby F T,Moore R K,Fung A K.Microwave Remote Sensing:Active and Passive,2,Radar Remote Sensing and Surface Scattering and Emission Theory[M].Reading,MA,Addison2 Wesley,1982.
 [2] Oh Y,Sarabandi K,Ulaby F T.An Empirical Model and an Inversion Technique for Radar Scattering from Bare Soil Surfaces[J].IEEE Transactions on Geoscience and Remote Sensing,1992,30(2):370-381.
 [3] Dubois P C,Zyl J v,Engman T.Measuring Soil Moisture with Imaging Radars[J].IEEE Transactions on Geoscience and Remote Sensing,1995,33(4):915-926.
 [4] Shi J,Wang J,Hsu A Y,et al.Estimation of Bare Surface Soil Moisture and Surface Roughness Parameter Using L-band SAR Image Data[J].IEEE Transactions on Geoscience and Remote Sensing,1997,35(5):1254-1266.
 [5] Baghdadi N,King C,Chanzy A,et al.An Empirical Calibration of the Integral Equation Model Based on SAR Data,Soil Moisture and Surface Roughness Measurement over Bare Soils[J].International Journal of Remote Sensing,2002,23(20):4325-4340.
 [6] Baghdadi N,Gherboudj I,Zribi M,et al.Semi-empirical Calibration of the IEM Backscattering Model Using Radar Images and Moisture and Roughness Field Measurements[J].International Journal of Remote Sensing,2004,25(18):3593-3623.
 [7] Baghdadi N,Holah N,Zribi M.Calibration of the Integral Equation Model for SAR Data in C-band and HH and VV Polarizations[J].International Journal of Remote Sensing,2006,27(4):805-816.
 [8] Rahman M M,Moran M S,Thoma D P,et al.A Derivation of Roughness Correlation Length for Parameterizing Radar Backscatter Models[J].International Journal of Remote Sensing,2007,28(18):3995-4012.
 [9] Rahman M M,Moran M S,Thoma D P,et al.Mapping Surface Roughness and Soil Moisture Sing Multi-angle Radar Imagery Without Ancillary Data[J].Remote Sensing of Environment,2008,112:391-402.
[10] Li Xin,Ma Mingguo,Wang Jian,et al.Simultaneous Remote Sensing and Ground-based Experiment in the Heihe River Basin:Scientific Objectives and Experiment Design[J].Advances in Earth Science,2008,23(9):897-914.[李新,马明国,王建,等.黑河流域遥感—地面观测同步试验:科学目标与试验方案[J].地球科学进展,2008,23(9):897-914.]
[11] Zribi M,Dechambre M.A New Empirical Model to Retrieve Soil Moisture and Roughness from C-band Radar Data[J].Remote Sensing of Environment,2002,84:42-52.
[12] Loew A,Ludwig R,Mauser W.Derivation of Surface Soil Moisture from ENVISAT ASAR Wide Swath and Image Mode Data in Agricultural Areas[J].IEEE Transactions on Geoscience and Remote Sensing,2006,44(4):889-899.
[13] Zribi M,Baghdadi N,Holah N,et al.Evaluation of a Rough Soil Surface Description with ASAR-ENVISAT Radar Data[J].Remote Sensing of Environment,2005,95:67-76.
[14] Holah N,T N B,Zribi M,et al.Potential of ASAR/ENVISAT for the Characterization of Soil Surface Parameters over Bare Agricultural Fields[J].Remote Sensing of Environment,2005,96:78-86.
[15] Oh Y.Quantitative Retrieval of Soil Moisture Content and Surface Roughness from Multipolarized Radar Observations of Bare Soil Surfaces[J].IEEE Transactions on Geoscience and Remote Sensing,2004,42(3):596-601.
[16] Fung A K,Li Z,Chen K S.Backscattering from a Randomly Rough Dielectric Surface[J].IEEE Transactions on Geoscience and Remote Sensing,1992,30(2):356-369.
[17] Fung A K.Microwave Scattering and Emission Models and Their Applications[M].Artech House Inc.,Norwood,MA,1994.
[18] Li Q,Shi J,Chen K S.A Generalized Power Law Spectrum and Its Applications to the Backscattering of Soil Surfaces Based on the Integral Equation Model[J].IEEE Transactions on Geoscience and Remote Sensing,2002,40(2):271-280.
[19] Chen K S,Wu T D,Tsang L,et al.Emission of Rough Surfaces Calculated by the Integral Equation Method with Comparison to Three-Dimensional Moment Method Simulations[J].IEEE Transactions on Geoscience and Remote Sensing,2003,41(1):90-101.
[20] Dobson M C,Ulaby F T,Hallikainen M T,et al.Microwave Dielectric Behavior of Wet Soil-Part II:Dielectric Mixing Models[J].IEEE Transactions on Geoscience and Remote Sensing,1985,GE-23(1):35-46.
[21] Njoku E G,Li L.Retrieval of Land Surface Parameters Using Passive Microwave Measurements at 6-18 GHz[J].IEEE Transactions on Geoscience and Remote Sensing,1999,37(1):79-93.
[22] Njoku E G,Jackson T J,Lakshmi V,et al.Soil Moisture Retrieval from AMSR-E[J].IEEE Transactions on Geoscience and Remote Sensing,2003,41(2):215-229.
[23] Bindlish R,Barros A P.Multifrequency Soil Moisture Inversion from SAR Measurements with the Use of IEM[J].Remote Sensing of Environment,2000,71:67-88.
[24] Ulaby F T,Sarabandi K,Mcdonald K,et al.Michigan Microwave Canopy Scattering Model[J].International Journal of Remote Sensing,1990,11(7):1223-1253.
[25] Karam M A,Fung A K,Lang R H,et al.A Microwave Scattering Model for Layered Vegetation[J].IEEE Transactions on Geoscience and Remote Sensing,1992,30(4):767-784.
[26] Attema E P,Ulaby F T.Vegetation Modeled as a Water Cloud[J].Radio Science,1978,13(2):357-364.

27 Bindlish R,Barros A P.Parameterization of Vegetation Backscatter in Radar-based,Soil Moisture EstimationJ.Remote Sensing of Environment,2001,76:130-137.

[1] 王宝刚,晋锐,赵泽斌,亢健. 被动微波遥感在地表冻融监测中的应用研究进展[J]. 遥感技术与应用, 2018, 33(2): 193-201.
[2] 白瑜,孟治国,赵凯. 像元尺度土壤水分监测网络及其对L波段土壤水分产品的初步验证结果[J]. 遥感技术与应用, 2018, 33(1): 78-87.
[3] 魏龙,王维真,吴月茹,马春锋. 土壤水盐介电模型对比与分析[J]. 遥感技术与应用, 2017, 32(6): 1022-1030.
[4] 向怡衡,张明敏,张兰慧,贺缠生,王一博,白晓. 祁连山区不同植被类型上的SMOS遥感土壤水分产品质量评估[J]. 遥感技术与应用, 2017, 32(5): 835-843.
[5] 曹永攀,黄春林,陈玮婧,张莹. 联合同化MODIS地表温度与机载L波段微波亮度温度估计土壤水分[J]. 遥感技术与应用, 2017, 32(4): 606-614.
[6] 王苏芸,孙中昶,郭华东,申维. 基于面向对象的东营市城乡建设用地信息提取[J]. 遥感技术与应用, 2017, 32(4): 780-786.
[7] 王增艳,王建,车涛. 机载L波段微波辐射计数据反演表层土壤水分研究[J]. 遥感技术与应用, 2017, 32(2): 185-194.
[8] 赵泽斌,晋 锐,田伟,亢健,苏阳. 基于SiB2模型的土壤水分降尺度指标的适用性研究[J]. 遥感技术与应用, 2017, 32(2): 195-205.
[9] 陆峥,柴琳娜,张涛,崔慧珍,李婉静. AMSR2土壤水分产品在黑河流域中上游的验证[J]. 遥感技术与应用, 2017, 32(2): 324-337.
[10] 张祥,陈报章,赵慧,汪磊. 基于时序Sentinel-1A数据的农田土壤水分变化检测分析[J]. 遥感技术与应用, 2017, 32(2): 338-345.
[11] 肖瑶,赵萍,范泽琳,陈国旭. TerraSAR-X数据在淮南矿区沉陷监测中的应用[J]. 遥感技术与应用, 2017, 32(1): 95-103.
[12] 张焱,李新武,梁雷. 基于微波散射计的格陵兰冰盖冻融探测方法研究[J]. 遥感技术与应用, 2017, 32(1): 113-120.
[13] 王迎强,严卫,严明. 基于星载微波辐射计的海面风场对海表盐度反演影响研究[J]. 遥感技术与应用, 2016, 31(6): 1037-1044.
[14] 沙敏敏,张风丽,符喜优,王国军,邵芸. 基于SAR数据的城市空气动力学粗糙度研究[J]. 遥感技术与应用, 2016, 31(5): 855-863.
[15] 邱玉宝,郭华东,石利娟,施建成. 基于AMSR-E的全球陆表被动微波发射率数据集[J]. 遥感技术与应用, 2016, 31(4): 809-819.