Please wait a minute...
img

官方微信

遥感技术与应用  2009, Vol. 24 Issue (5): 622-630    DOI: 10.11873/j.issn.1004-0323.2009.5.622
技术研究与图像处理     
积雪微波辐射亮温对积雪参数的敏感性分析——以多层积雪微波辐射模型为例
白云洁1,2, 卢 玲1, 李 新1, 车 涛1
1.中国科学院寒区旱区环境与工程研究所,甘肃 兰州 730000 2.中国科学院研究生院,北京 100049
Sensitivity Analysis on Snow Parameters Impacting Passive Microwave Brightness Temperature of Snow——An Study Based on MEMLS
BAI Yun-Jie1,2,LU Ling1,LI Xin1,CHE Tao1
1.Cold and Arid Region Environmental and Engineering Research Institute,Chinese Academy of Sciences,Lanzhou 730000,China 2.Graduate University of the Chinese Academy of Sciences,Beijing 100049,China
 全文: PDF(2274 KB)  
摘要:

积雪的被动微波辐射亮温信号十分复杂,深度、温度、粒径、密度、液态水含量,以及下垫面的状况都会不同程度的影响积雪层的亮度温度。本文利用多层积雪微波辐射模型(MEMLS)分别针对各个输入参数对模拟亮温的影响进行了分析,发现粒径是敏感性最高的模型参数,湿度、深度、密度、积雪温度次之。模型模拟结果表明,当雪深小于50cm时,雪深可以近似地表示为19和37GHz的亮温差的线性函数 |当雪深大于50cm后,随着雪深的增加,亮温差增加幅度变小,趋向于饱和。在建立积雪深度反演公式时,粒径和密度会影响公式的拟合系数。把一定区域内积雪粒径和密度看作是相同的值,这可能是造成被动微波遥感反演雪深和雪水当量误差的原因之一。被动微波无法反演湿雪的雪深和雪水当量,但可以有效识别干雪和湿雪,为水文模拟以及农业灌溉提供科学的依据和信息。积雪温度对积雪辐射亮温影响较小,而且在对积雪深度进行反演时,两个频率亮温值相减,温度的影响也被降到了最低。

关键词: 积雪被动微波遥感 敏感性分析    
Abstract:

There are various factors that impact passive microwave responses of snow. These factors include depth, crystal size, wetness, density and temperature of snow. In this paper, a sensitivity study was carried out based on Microwave Emission Model of Layered Snowpacks (MEMLS) model. The result showed that grain size made the most effect on the output of the model, while depth, wetness, density, and snow temperature are in the next place. The relation between snow depth and the difference between 19 and 37GHz brightness temperature can be described by a linear formula when the snow depth is less than 50cm, while the range of increase will slow down and tend to a saturation when the snow depth is large than 50cm. Snow density and grain size can greatly influence the coefficient of the linear formula. The passive microwave remote sensing data could not reflect snow depth and snow water equivalent when snow is wet because liquid water significantly changes the permittivity of dry snow. The difference of snow temperature at different channels can reduce the effect of brightness temperature on the estimation of snow depth.

Key words:  Passive microwave remote sensing of snow    Sensitivity analysis
收稿日期: 2009-03-11 出版日期: 2010-08-24
基金资助:

中国科学院西部行动计划(二期)项目“黑河流域遥感—地面观测同步试验与综合模拟平台建设”(KZCX2-XB2-09) ;财政部/科技部公益类行业专项(GYHY(QX)2007-6-18)资助。

作者简介: 白云洁(1982-),硕士研究生,主要从事积雪遥感的研究。E-mail:baiyj27@163.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
白云洁
卢 玲
李 新
车 涛

引用本文:

白云洁, 卢 玲, 李 新, 车 涛. 积雪微波辐射亮温对积雪参数的敏感性分析——以多层积雪微波辐射模型为例[J]. 遥感技术与应用, 2009, 24(5): 622-630.

BAI Yun-Jie, LU Ling, LI Xin, CHE Tao. Sensitivity Analysis on Snow Parameters Impacting Passive Microwave Brightness Temperature of Snow——An Study Based on MEMLS. Remote Sensing Technology and Application, 2009, 24(5): 622-630.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2009.5.622        http://www.rsta.ac.cn/CN/Y2009/V24/I5/622

[1] Tedesco M,Kim E J,England A W,et al.Brightness Temperatures of Snow Melting/Refreezing Cycle:Observations and Modeling Using a Multilayer Dense Medium Theory-based Model[J].IEEE Transactions on Geoscience and Remote Sensing,2006,44(2):3563-3573.
 [2] Chang A T C,Foster J L,Hall D K.Satellite Sensor Estimates of Northern Gemisphere Snow Volumn[J].International Journal Remote Sensing,1990,11(1):167-171.
 [3] Li Xin,Cheng Guodun,Jin Huijun,et al.Cryospheric Change in China[J].Global and Planetary Change,2008,62:210-218.
 [4] Li Peiji,Mi Desheng.Distribution of Snow Cover in China[J].Journal of Glaciology and Geocryology,1983,5(4):9-18.[李培基,米德生.中国积雪的分布[J].冰川冻土,1983,5(4):9-18.]
 [5] Roy V,Gota K,Royer A,et al.Snow Water Equivalent Retrieval in a Canadian Boreal Environment from Microwave Measurements Using the HUT Snow Emission Model[J].IEEE Transactions on Geoscience and Remote Sensing,2004,42(9):1850-1859.
 [6] Che Tao,Li Xin,Gao Feng.Estimation of Snow Water Equivalent in the Tibetan Plateau Using Passive Microwave Remote Sensing Data(SSM/I)[J].Journal of Glaciology and Geocryology,2004,26(3):373-378.[车涛,李新,高峰.青藏高原积雪深度和雪水当量的被动微波遥感反演[J].冰川冻土,2004,26(3):373-378.]
 [7]   Foster J L,Sun C,Walker J P,et al.Quantifying the Uncertainty in Passive Microwave Snow Water Equivalent Observations[J].Remote Sensing of Environment,2005,94(2):187-203. 
 [8] Chang A T C,Foster J L,Hall D K.Nimbus-7 SMMR Derived Global Snow Cover Parameters[J].Annals of Glaciology,1987,9:39-44.
 [9] Armstrong R L,Brodzik M J.Hemisphere-scale Comparison and Evaluation of Passive-microwave Snow Algorithms[J].Annals of Glaciology,2002,34:38-44.
[10] Wiesmann A,Mtzler C.Microwave Emission Model of Layered Snowpacks[J].Remote Sensing of Environment,1999,70:307-316. 
[11] Mtzler C,Wiesmann A.Extension of the Microwave Emission Model of Layered Snowpacks to Coarse-grained Snow[J].Remote Sensing of Environment,1999,70:317-325.
[12] Cao Meisheng,Li Xin,Chen Xianzhang,et al.Remote Sensing of Cryosphere[M].Beijing: Science Press,2006.[曹梅盛,李新,陈贤章,等.冰冻圈遥感[M].北京:科学出版社,2006.]
[13] Josberger E G,Gloersen P,Chang A,et al.The Effects of Snowpack Grain Size on Satellite Passive Microwave Observation from the Upper Colorado River Basin[J].Journal of Geophysical Research,1996,101(C3):6679-6688.
[14] Cao Meisheng,Li Peiji.Evaluation and Primary Application of Microwave Remote Sensing SMMR-Derived Snow Cover in Western China[J].Remote Sensing of Environment China,1993,8(4):260-269.[曹梅盛,李培基.中国西部积雪SMMR微波遥感的评价与初步应用[J].环境遥感,1993,8(4):260-269.]
[15] Li Xin,Ma Mingguo,Wang Jian,et al.Simultaneous Remote Sensing and Ground-based Experiment in the Heihe River Basin:Scientific Objectives and Experiment Design[J].Advances in Earth Science,2006,23(9):897-914.[李新,马明国,王建,等.黑河流域遥感—地面观测同步试验:科学目标与试验方案[J].地球科学进展,2006,23(9):897-914.]
[16] Chang A T C,Gloersen P,Schmugge T,et al.Microwave Emission from Snow and Glacier Ice[J].Journal of Glaciology,1976,16:23-39.
[17] Jin Y Q.Snow Depth Inverted by Scattering Indices of SSM/I Channels in a Mesh Graph[J].International Journal of Remote Sensing,1997,18(8):1843-1849.
[18] Tsang L,Chen C T,Chang A,et al.Dense Media Radiative Transfer Theroy Based on Quasicrystalline Approximation with Applications to Passive Microwave Remote Sensing of Snow[J].Radio Science,2000,35(3):731-749.
[19] Shi J C,Dozier J.Estimation of Snow Water Equivalent Using SIR-C/X-SAR[J].IEEE Transactions on Geoscience and Remote Sensing,2000,38(6):2475-2488.
[20] Josberger E G,Mognard N M.A Passive Microwave Snow Depth Algorithm with a Proxy for Snow Metamorphism[J].Hydrological Processes,2002,16:1557-1568.
[21] Debye,Anderson H R,Brumberger H,et al.Scattering by an Inhomogeneous SolidⅡ.The Correction Function and Application[J].Journal of Applied Physics,1957,28(6):679-683.
[22] Koenig L S,Forster R R.Evaluation of Passive Microwave Snow Water Equivalent Algorithms in the Depth Hoar-dominated Snowpack of the Kuparuk River Watershed,Alaska,USA[J].Remote Sensing of Environment,2004,93:511-527.
[23] Mtzler C.Relation Between Grain-size and Correlation Le-ngth of Snow[J].Journal of Glaciology,2002,78(162):461-466.
[24] Sturm M,Holmgren J.Differences in Compaction Behavior of three Climate Classes of Snow[J].Annals of Glaciology,1998,26:125-130.
[25] Kelly R E,Chang A T,Leung T,et al.A Prototype AMSR-E Global Snow Area and Snow Depth Algorithm[J].IEEE Transactions on Geoscience and Remote Sensing,2003,44(2):230-242.
[26] Foster J L,Chang A T C,Hall D K,et al.Comparison of Snow Mass Estimate from Prototype Passive Microwave Snow Algorithm,a Revised Algorithm and a Snow Depth Climatology[J].Remote Sensing of Environment,1997,62(2):132-142.
[27] Chang A T C,Foster J L,Hall D K.Snow Parameters Derived from Microwave Measurements During the BOREAS Winter Field Campaign[J].Journal of Geophysical Research,1997,102(D24):29663-29671.
[28] Hall D K.Influence of Depth Hoar on Microwave Emission from Snow in Northern Alaska[J].Cold Regions Science and Technology,1987,13:225-231.
[29] Tait A B.Estimation of Snow Water Equivalent Using Passive Microwave Radiation Data[J].Remote Sensing of Environment,1998,64:286-291.
[30] Hall D K,Sturm M,Benson C S,et al.Passive Microwave Remote and in Situ Measurements of Arctic and Subarctic Snow Cover in Alaska[J].Remote Sensing of Environment,1991,38:161-172.
[31] Foster J L,Hall D K,Chang A T C,et al.Effects of Snow Crystal Shape on the Scattering of Passive Microwave Radiation[J].IEEE Transactions on Geoscience and Remote Sensing,1999,37(2):1165-1168.
[32] Foster J L,Barton J S,Chang A T C,et al.Snow Crystal Orientation Effects on the Scattering of Passive Microwave Radiation[J].IEEE Transactions on Geoscience and Remote Sensing,2000,38(5):2430-2434.
[33] Tait A B.Estimation of Snow Water Equivalent Using Passive Microwave Radiation Data[J].Remote Sensing of Environment,1998,64:286-291.
[34] Macelloni G,Paloscia S,Pampaloni P,et al.Microwave Emission from Dry Snow:A Comparison of Experimental and Model Results[J].IEEE Transactions on Geoscience and Remote Sensing,2001,39(12):2649-2656.

35 Neale C M U ,McFarland M J ,Chang K.Land-Surface-Type Classification Using Microwave Brightness Temperature from the Special Sensor Microwave/ Imager J .IEEE Transaction on Geoscience and Remote Sensing ,1990,28(5):829-837.

[1] 王恺宁,王修信,黄凤荣,罗涟玲. 喀斯特城市地表温度遥感反演算法比较[J]. 遥感技术与应用, 2018, 33(5): 803-810.
[2] 陈雪娇,陈芸芝. 单窗算法在福建毗邻海域海表温度反演的适用性分析[J]. 遥感技术与应用, 2017, 32(4): 773-779.
[3] 李艳,黄春林,卢玲. 基于EFAST方法的SEBS模型参数全局敏感性分析[J]. 遥感技术与应用, 2014, 29(5): 719-726.
[4] 王李娟,牛铮. PROSAIL模型的参数敏感性研究[J]. 遥感技术与应用, 2014, 29(2): 219-223.